论文标题

完整参考屏幕内容图像图像质量评估通过融合多层结构相似性

Full Reference Screen Content Image Quality Assessment by Fusing Multi-level Structure Similarity

论文作者

Chen, Chenglizhao, Zhao, Hongmeng, Yang, Huan, Peng, Chong, Yu, Teng

论文摘要

屏幕内容图像(SCI)通常包含各种内容类型,具有锋利的边缘,其中的伪影或扭曲可以通过完整的参考方式通过香草结构相似性测量来很好地感知。但是,几乎所有当前的SOTA结构相似性指标都是以单层方式“局部”制定的,而真正的人类视觉系统(HVS)遵循多层次的方式,并且这种不匹配最终可以防止这些指标实现可信赖的质量评估。为了改善,本文提倡一种新的解决方案,从稀疏表示的角度来测量“全球”结构相似性。为了按照实际HVS进行多层次的质量评估,上述全球度量标准将通过诉​​诸于新设计的选择性深层融合网络来与常规本地度量集成。为了验证其功效和有效性,我们将我们的方法与两个广泛使用的大型公共科学数据集的12种方法进行了比较,并且定量结果表明,与当前领先的工作相比,我们的方法与主观质量得分的一致性明显更高。源代码和数据都可以公开获得,以获得广泛的接受并促进新的进步及其验证。

The screen content images (SCIs) usually comprise various content types with sharp edges, in which the artifacts or distortions can be well sensed by the vanilla structure similarity measurement in a full reference manner. Nonetheless, almost all of the current SOTA structure similarity metrics are "locally" formulated in a single-level manner, while the true human visual system (HVS) follows the multi-level manner, and such mismatch could eventually prevent these metrics from achieving trustworthy quality assessment. To ameliorate, this paper advocates a novel solution to measure structure similarity "globally" from the perspective of sparse representation. To perform multi-level quality assessment in accordance with the real HVS, the above-mentioned global metric will be integrated with the conventional local ones by resorting to the newly devised selective deep fusion network. To validate its efficacy and effectiveness, we have compared our method with 12 SOTA methods over two widely-used large-scale public SCI datasets, and the quantitative results indicate that our method yields significantly higher consistency with subjective quality score than the currently leading works. Both the source code and data are also publicly available to gain widespread acceptance and facilitate new advancement and its validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源