论文标题

双曲线多边形台球的桥梁

Bridge to Hyperbolic Polygonal Billiards

论文作者

Attarchi, Hassan, Bunimovich, Leonid A.

论文摘要

众所周知,多边形的台球不能混乱(双曲线)。任何多边形台球的kolmogorov-sinai熵均为零。我们考虑物理多边形的台球,其中移动粒子是硬盘而不是点(数学)粒子,并表明典型的物理多边形台球至少在积极度量的子集中是双曲线,因此,kolmogorov-sinai熵的kolmogorov-sinai熵是动态粒子的任何积极半径(前提是粒子都不是如此之大,以至于它不能移动到多头性粒子内)。之所以发生这种情况,是因为典型的物理多边形台球等于数学(点粒子)半分散台球。我们还猜想,实际上多边形的典型物理台球在相同的条件下是颈。

It is well-known that billiards in polygons cannot be chaotic (hyperbolic). Particularly Kolmogorov-Sinai entropy of any polygonal billiard is zero. We consider physical polygonal billiards where a moving particle is a hard disc rather than a point (mathematical) particle and show that typical physical polygonal billiard is hyperbolic at least on a subset of positive measure and therefore has a positive Kolmogorov- Sinai entropy for any positive radius of the moving particle (provided that the particle is not so big that it cannot move within a polygon). This happens because a typical physical polygonal billiard is equivalent to a mathematical (point particle) semi-dispersing billiard. We also conjecture that in fact typical physical billiard in polygon is ergodic under the same conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源