论文标题

通过生成数据增强来提高细颗粒图像分类器的性能

Improving the Performance of Fine-Grain Image Classifiers via Generative Data Augmentation

论文作者

Manjunath, Shashank, Nathaniel, Aitzaz, Druce, Jeff, German, Stan

论文摘要

机器学习(ML)和计算机视觉工具的最新进展已在多种领域(例如财务分析,医学诊断,甚至在国防部内)进行了应用程序。但是,它们在现实世界中的广泛实现提出了几个挑战:(1)许多应用程序是高度专业化的,因此在\ emph {稀疏数据}域中运行; (2)ML工具对其训练集很敏感,通常需要繁琐的,劳动密集型的数据收集和数据标记过程; (3)ML工具可能是极其“黑匣子”,几乎没有洞悉决策过程或新数据可能如何影响预测性能。为了应对这些挑战,我们设计和开发了数据增强,从熟练的良好生成对抗网络(DAPPER GAN)的熟练预培训(ML Analytics支持工具)自动生成训练图像的新型视图,以改善下游分类器的性能。 Dapper Gan利用了由stylegan2型号(在LSUN CARS数据集中训练)生成的高保真嵌入,以为以前看不见的类创建新颖的图像。我们在斯坦福汽车数据集上实验评估了该技术,证明了使用基于GAN的数据增强框架的改进的车辆品牌和模型分类精度,并降低了对真实数据的要求。该方法的有效性通过分析在增强和非仪器数据集中的分类器性能分析,从而在视觉上相似类中实现了可比性或更高的准确性,最多可以使用30 \%的真实数据。为了支持这种方法,我们开发了一种新颖的增强方法,可以操纵嵌入空间中目标对象的语义上有意义的维度(例如,方向)。

Recent advances in machine learning (ML) and computer vision tools have enabled applications in a wide variety of arenas such as financial analytics, medical diagnostics, and even within the Department of Defense. However, their widespread implementation in real-world use cases poses several challenges: (1) many applications are highly specialized, and hence operate in a \emph{sparse data} domain; (2) ML tools are sensitive to their training sets and typically require cumbersome, labor-intensive data collection and data labelling processes; and (3) ML tools can be extremely "black box," offering users little to no insight into the decision-making process or how new data might affect prediction performance. To address these challenges, we have designed and developed Data Augmentation from Proficient Pre-Training of Robust Generative Adversarial Networks (DAPPER GAN), an ML analytics support tool that automatically generates novel views of training images in order to improve downstream classifier performance. DAPPER GAN leverages high-fidelity embeddings generated by a StyleGAN2 model (trained on the LSUN cars dataset) to create novel imagery for previously unseen classes. We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy and reduced requirements for real data using our GAN based data augmentation framework. The method's validity was supported through an analysis of classifier performance on both augmented and non-augmented datasets, achieving comparable or better accuracy with up to 30\% less real data across visually similar classes. To support this method, we developed a novel augmentation method that can manipulate semantically meaningful dimensions (e.g., orientation) of the target object in the embedding space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源