论文标题

Logodet-3K:用于徽标检测的大型图像数据集

LogoDet-3K: A Large-Scale Image Dataset for Logo Detection

论文作者

Wang, Jing, Min, Weiqing, Hou, Sujuan, Ma, Shengnan, Zheng, Yuanjie, Jiang, Shuqiang

论文摘要

由于其在多媒体领域的广泛应用,例如版权侵权检测,品牌可见性监测和社交媒体上的产品品牌管理,因此徽标检测引起了广泛的关注。在本文中,我们介绍了Logodet-3K,这是具有完整注释的最大徽标检测数据集,该数据集具有3,000个徽标类别,约200,000个手动注释的徽标对象和158,652张图像。 LogOdet-3K为徽标检测创建了更具挑战性的基准,它的综合覆盖率更高,并且与现有数据集相比,徽标类别和带注释的对象的更广泛。我们描述了数据集的收集和注释过程,与其他数据集相比,分析其规模和多样性。我们进一步提出了一个强大的基线方法徽标YOLO,该方法将焦点损失和CIOU丢失纳入了最新的Yolov3框架中,以进行大规模徽标检测。徽标Yolo可以解决多尺度对象,徽标样本不平衡和不一致的边界盒回归的问题。与Yolov3相比,它的平均性能提高了约4%,与报道的Logodet-3K的几种深度检测模型相比,它的改善更大。对其他三个现有数据集的评估进一步验证了我们方法的有效性,并证明了LogoDet-3K在徽标检测和检索任务上的更好的概括能力。 LogOdet-3K数据集用于促进与徽标相关的大规模研究,可以在https://github.com/wangjing1551/logodet-3k-dataset上找到。

Logo detection has been gaining considerable attention because of its wide range of applications in the multimedia field, such as copyright infringement detection, brand visibility monitoring, and product brand management on social media. In this paper, we introduce LogoDet-3K, the largest logo detection dataset with full annotation, which has 3,000 logo categories, about 200,000 manually annotated logo objects and 158,652 images. LogoDet-3K creates a more challenging benchmark for logo detection, for its higher comprehensive coverage and wider variety in both logo categories and annotated objects compared with existing datasets. We describe the collection and annotation process of our dataset, analyze its scale and diversity in comparison to other datasets for logo detection. We further propose a strong baseline method Logo-Yolo, which incorporates Focal loss and CIoU loss into the state-of-the-art YOLOv3 framework for large-scale logo detection. Logo-Yolo can solve the problems of multi-scale objects, logo sample imbalance and inconsistent bounding-box regression. It obtains about 4% improvement on the average performance compared with YOLOv3, and greater improvements compared with reported several deep detection models on LogoDet-3K. The evaluations on other three existing datasets further verify the effectiveness of our method, and demonstrate better generalization ability of LogoDet-3K on logo detection and retrieval tasks. The LogoDet-3K dataset is used to promote large-scale logo-related research and it can be found at https://github.com/Wangjing1551/LogoDet-3K-Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源