论文标题
CNT纤维的受控电化学功能化:结构化学关系和当前无收集器全稳态超级电容器的应用
Controlled electrochemical functionalization of CNT fibers: structure-chemistry relations and application in current collector-free all-solid supercapacitors
论文作者
论文摘要
纳米可碳的化学功能化是一种重要策略,可以通过增加其表面积和相应的电容性贡献以及改善与水溶液和其他活性材料(例如伪型金属氧化物)来产生具有额外FARADAIC的表面功能组来产生具有较高能量/功率密度的电化学系统。在这里,我们提出了一种电化学方法,可以同时膨胀和功能化大型电极,该电极由碳纳米管的宏观纤维的织物组成,该纤维纤维可导致物质亲水性,并在水溶液中产生特定的电容和能量密度的大幅增加。通过对碳纳米管纤维(CNTF)的深入表征,通过拉曼光谱,传输电子显微镜,X射线光电镜(XPS)和小角度X射线散射(SAXS),我们确定了对此类改进的各种贡献,包括表面氧化,tubular氧化,deblized,debunizing,debunding swelld和bundled and-delling swelling。通过分析电极中极性和非极性液体扩散的动力学来确定功能化CNTF的亲水性变化。针对不同处理条件的提取的接触角以及极性和分散表面能量成分与XPS获得的偶极钟的变化一致。最后,在当前无收集器固体柔性超电容器中使用了功能化的CNTF电极,与产生的疏水性相比,其电化学性能增强。
Chemical functionalization of nanocarbons is an important strategy to produce electrochemical systems with higher energy/power density by generating surface functional groups with additional faradaic contribution, by increasing their surface area and correspondent capacitive contribution and by improving compatibility with aqueous electrolytes and other active materials, such as pseudocapacitive metal-oxides. Here we present an electrochemical method to simultaneously swell and functionalize large electrodes consisting of fabrics of macroscopic fibers of carbon nanotubes that renders the material hydrophilic and produces a substantial increase of specific capacitance and energy density in aqueous electrolytes. Through in-depth characterization of the carbon nanotube fibres (CNTF) by Raman spectroscopy, transmission electron microscopy, X-ray photoelectrocn spectroscopy (XPS) and small-angle X-ray scattering (SAXS) we identify various contributions to such improvements, including surface oxidation, tubular unzipping, debundling and inter-bundle swelling. Changes in hydrophilicity of functionalized CNTF are determined by analyzing the dynamics of spreading of polar and nonpolar liquids in the electrode. The extracted contact angles and polar and dispersive surface energy components for different treatment conditions are in agreement with changes in dipole-moment obtained by XPS. Finally, functionalized CNTF electrodes were employed in current collector-free solid flexible supercapacitors, which show enhanced electrochemical properties compared to as-produced hydrophobic ones.