论文标题

比较载体玻色子散射的运动学重建的传统和深度学习技术

Comparing Traditional and Deep-Learning Techniques of Kinematic Reconstruction for polarisation Discrimination in Vector Boson Scattering

论文作者

Grossi, M., Novak, J., Kersevan, B., Rebuzzi, D.

论文摘要

测量WW通道中纵向极化的向量玻色子散射是一种有前途的方法,可以通过HIGGS机制来研究单位性恢复,并在标准模型之外寻找可能的物理。为了进行这样的测量,至关重要的是,在Leptonic衰变中有效地重建了全W玻色子运动学,重点是偏振度测量。我们研究了几种方法,从传统的方法到先进的深层神经网络结构,并比较了它们重建W玻色子参考框架的能力,并因此测量了半左右和Di-Leptonic WW衰减通道中的纵向分数W_L。

Measuring longitudinally polarised vector boson scattering in WW channel is a promising way to investigate unitarity restoration with the Higgs mechanism and to search for possible physics beyond the Standard Model. In order to perform such a measurement, it is crucial to develop an efficient reconstruction of the full W boson kinematics in leptonic decays with the focus on polarisation measurements. We investigated several approaches, from traditional ones up to advanced deep neural network structures, and we compared their ability to reconstruct the W boson reference frame and to consequently measure the longitudinal fraction W_L in both semi-leptonic and di-leptonic WW decay channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源