论文标题
针对像素的半监督学习的指导协作培训
Guided Collaborative Training for Pixel-wise Semi-Supervised Learning
论文作者
论文摘要
我们研究了半监督学习(SSL)对各种像素的任务的概括。尽管SSL方法在图像分类方面取得了令人印象深刻的结果,但是将它们应用于像素任务的性能是不满意的,因为它们需要致密输出。此外,现有的像素SSL方法仅适用于某些任务,因为它们通常需要使用特定于任务的属性。在本文中,我们提出了一个新的SSL框架,名为“指导协作培训”(GCT),用于像素的任务,并提供了两项主要技术贡献。首先,GCT解决了通过新型缺陷探测器致密输出引起的问题。其次,GCT中的模块通过两个与特定于任务的属性无关的新提出的约束从未标记的数据中学习。结果,可以将GCT应用于无结构适应的各种像素任务。我们对四项具有挑战性的视觉任务进行的广泛实验,包括语义分割,真实的图像DeNoing,肖像图像垫和增强夜图像,表明GCT的表现优于最先进的SSL方法。我们的代码可在以下网址提供:https://github.com/zhkkke/pixelssl。
We investigate the generalization of semi-supervised learning (SSL) to diverse pixel-wise tasks. Although SSL methods have achieved impressive results in image classification, the performances of applying them to pixel-wise tasks are unsatisfactory due to their need for dense outputs. In addition, existing pixel-wise SSL approaches are only suitable for certain tasks as they usually require to use task-specific properties. In this paper, we present a new SSL framework, named Guided Collaborative Training (GCT), for pixel-wise tasks, with two main technical contributions. First, GCT addresses the issues caused by the dense outputs through a novel flaw detector. Second, the modules in GCT learn from unlabeled data collaboratively through two newly proposed constraints that are independent of task-specific properties. As a result, GCT can be applied to a wide range of pixel-wise tasks without structural adaptation. Our extensive experiments on four challenging vision tasks, including semantic segmentation, real image denoising, portrait image matting, and night image enhancement, show that GCT outperforms state-of-the-art SSL methods by a large margin. Our code available at: https://github.com/ZHKKKe/PixelSSL.