论文标题

在奇数高纤维化曲线上给定顺序的点数

On the number of point of given order on odd degree hyperelliptic curves

论文作者

Boxall, John

论文摘要

对于整数$ n \ geq 3 $和$ g \ geq 1 $,我们研究了订单点的基数,分隔了$ n $的$ n $,该$ n $躺在属于雅各比安属的属属属于属于雅各比的属性,使用weiersstrass Point作为基本点。这使我们重新审视了Cantor于1995年引入的多项式分区,并加强了他证明的可驱缘性结果。讨论了几个例子。

For integers $N\geq 3$ and $g\geq 1$, we study bounds on the cardinality of the set of points of order dividing $N$ lying on a hyperelliptic curve of genus $g$ embedded in its jacobian using a Weierstrass point as base point. This leads us to revisit division polynomials introduced by Cantor in 1995 and strengthen a divisibility result proved by him. Several examples are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源