论文标题

IRO $ _6 $ _6 $ octahedra在超级晶格中的稳定稳定与Ilmenite-type mntio $ _3 $

Stabilization of a honeycomb lattice of IrO$_6$ octahedra in superlattices with ilmenite-type MnTiO$_3$

论文作者

Miura, Kei, Fujiwara, Kohei, Nakayama, Kei, Ishikawa, Ryo, Shibata, Naoya, Tsukazaki, Atsushi

论文摘要

为了寻求量子自旋液体,预计薄膜可以通过利用外延菌株和二维性来控制实际材料中复杂的磁相互作用的道路。但是,与常规薄膜生长方法兼容的材料在很大程度上尚未开发。 As a promising candidate towards the materialization of quantum spin liquids in thin films, we here present a robust ilmenite-type oxide with a honeycomb lattice of edge-sharing IrO$_6$ octahedra artificially stabilized by superlattice formation with an ilmenite-type antiferromagnetic oxide MnTiO$_3$.稳定的子单元 - 厚度厚度的mn-ir-o层是mntio $ _3 $的等值层,其原子布置对应于尚未发现的iLmenite-type mntio $ _3 $。通过自旋大厅的磁场测量值,我们发现Ilmenite Mn Sublattice中的抗磁磁有序被MNO $ _6 $ planes中的MNO $ _6 $ planes中的修饰磁相互作用抑制。这些发现为创建二维Kitaev候选材料的基础奠定了基础,从而加速了外来物理学和针对量子自旋液体的应用。

In the quest for quantum spin liquids, thin films are expected to open the way for the control of intricate magnetic interactions in actual materials by exploiting epitaxial strain and two-dimensionality. However, materials compatible with conventional thin-film growth methods have largely remained undeveloped. As a promising candidate towards the materialization of quantum spin liquids in thin films, we here present a robust ilmenite-type oxide with a honeycomb lattice of edge-sharing IrO$_6$ octahedra artificially stabilized by superlattice formation with an ilmenite-type antiferromagnetic oxide MnTiO$_3$. The stabilized sub-unit-cell-thick Mn-Ir-O layer is isostructural to MnTiO$_3$, having the atomic arrangement corresponding to ilmenite-type MnTiO$_3$ not discovered yet. By spin Hall magnetoresistance measurements, we found that antiferromagnetic ordering in the ilmenite Mn sublattice is suppressed by modified magnetic interactions in the MnO$_6$ planes via the IrO$_6$ planes. These findings lay the foundation for the creation of two-dimensional Kitaev candidate materials, accelerating the discovery of exotic physics and applications specific to quantum spin liquids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源