论文标题
在一些立方四倍的不变
On some invariants of cubic fourfolds
论文作者
论文摘要
对于一般的立方四倍$ x \ subset \ mathbb {p}^5 $,我们计算了第二类类型行的locus $ s \ subset f $的hodge编号。对于任何平滑的立方体表面的线条方案的非理性性程度,我们还给出了6个上限。
For a general cubic fourfold $X \subset \mathbb{P}^5$, we compute the Hodge numbers of the locus $S \subset F$ of lines of second type. We also give an upper bound of 6 for the degree of irrationality of the Fano scheme of lines of any smooth cubic hypersurface.