论文标题
朝着几何引导的神经摄影摄影
Towards Geometry Guided Neural Relighting with Flash Photography
论文作者
论文摘要
以前的基于图像的重新处理方法需要捕获多个图像以在不同的照明条件下获得高频照明效果,这需要非平凡的努力,并且在某些实际使用情况下可能是不现实的。尽管这种方法完全依赖于在不同的照明条件下巧妙地采样颜色图像,但几乎没有采取几何信息来影响图像中的高频特征,例如光滑的亮点和铸造阴影。因此,我们提出了一个框架,用于使用深度学习的相应深度图从单个闪光灯照片重新保留图像。通过合并深度图,我们的方法能够通过来自手电筒图像的几何引导图像分解在新颖的照明下推断现实的高频效应,并从阴影编码的转换深度图中预测铸造阴影图。此外,基于单像的设置大大简化了数据捕获过程。我们在实验中验证了几何学指导方法比基于图像的最先进的图像分解和图像重新确定的方法的优势,并且还展示了我们在真实手机照片示例上的性能。
Previous image based relighting methods require capturing multiple images to acquire high frequency lighting effect under different lighting conditions, which needs nontrivial effort and may be unrealistic in certain practical use scenarios. While such approaches rely entirely on cleverly sampling the color images under different lighting conditions, little has been done to utilize geometric information that crucially influences the high-frequency features in the images, such as glossy highlight and cast shadow. We therefore propose a framework for image relighting from a single flash photograph with its corresponding depth map using deep learning. By incorporating the depth map, our approach is able to extrapolate realistic high-frequency effects under novel lighting via geometry guided image decomposition from the flashlight image, and predict the cast shadow map from the shadow-encoding transformed depth map. Moreover, the single-image based setup greatly simplifies the data capture process. We experimentally validate the advantage of our geometry guided approach over state-of-the-art image-based approaches in intrinsic image decomposition and image relighting, and also demonstrate our performance on real mobile phone photo examples.