论文标题
具有异质存储和计算速度的机器上的编码弹性计算
Coded Elastic Computing on Machines with Heterogeneous Storage and Computation Speed
论文作者
论文摘要
我们研究了机器具有不同计算速度和存储的异质编码弹性计算(CEC)的最佳设计。 CEC由Yang等人引入。在2018年是一个框架,可以减轻弹性事件的影响,机器可以在任意时间加入并离开。在CEC中,数据使用最大距离可分离(MDS)代码在机器之间分布,以便计算机子集可以执行所需的计算。但是,最新的CEC设计仅在机器具有相同速度和存储空间的均匀网络上运行。这可能不实用。在这项工作中,基于MDS存储分配,我们为异质CEC网络开发了一种新颖的计算分配方法,以最大程度地减少整体计算时间。我们首先考虑机器具有异质计算速度但相同存储的情况,然后考虑存在两个异质性的方案。我们提出了一种新颖的组合优化公式,并通过将其分解为凸优化问题,以找到最佳计算负载和找到确切的计算分配的“填充问题”,从而准确地解决了它。低复杂性的“填充算法”是适应的,并且可以在多数迭代中完成,最多等于可用机器的数量。
We study the optimal design of heterogeneous Coded Elastic Computing (CEC) where machines have varying computation speeds and storage. CEC introduced by Yang et al. in 2018 is a framework that mitigates the impact of elastic events, where machines can join and leave at arbitrary times. In CEC, data is distributed among machines using a Maximum Distance Separable (MDS) code such that subsets of machines can perform the desired computations. However, state-of-the-art CEC designs only operate on homogeneous networks where machines have the same speeds and storage. This may not be practical. In this work, based on an MDS storage assignment, we develop a novel computation assignment approach for heterogeneous CEC networks to minimize the overall computation time. We first consider the scenario where machines have heterogeneous computing speeds but same storage and then the scenario where both heterogeneities are present. We propose a novel combinatorial optimization formulation and solve it exactly by decomposing it into a convex optimization problem for finding the optimal computation load and a "filling problem" for finding the exact computation assignment. A low-complexity "filling algorithm" is adapted and can be completed within a number of iterations equals at most the number of available machines.