论文标题
在欧拉方程的磁盘状涡流贴片中的粒子轨迹的绕组数
On the winding number for particle trajectories in a disk-like vortex patch of the Euler equations
论文作者
论文摘要
我们考虑了平面中不可压缩的Euler方程的涡流贴片解决方案。结果表明,当初始贴片接近磁盘足够接近时,贴片中大多数粒子的原点周围的绕组数将在线性上生长。
We consider vortex patch solutions of the incompressible Euler equations in the plane. It is shown that the winding number around the origin for most particles in the patch grows linearly in time when the initial patch is close to a disk enough.