论文标题
家庭参数平面的组合结构$λ\ tan z^2 $
Combinatorial structure of the parameter plane of the family $λ\tan z^2$
论文作者
论文摘要
在本文中,我们将讨论家族参数平面的组合结构$ \ MATHCAL f = \ {λ\ tan z^2:λ\ in \ Mathbb c^*,\ z \ in \ z \ in \ mathbb c \}。$ $该参数空间包含动力学在其julia sets上的动力学的组件。这些成分的补充是分叉基因座。这些是双曲线分量,其中肾小见与朱莉娅集合不相交。我们证明,除了周期的四个组件外,所有双曲线成分都是界限的,它们都已连接。
In this article we will discuss combinatorial structure of the parameter plane of the family $ \mathcal F = \{ λ\tan z^2: λ\in \mathbb C^*, \ z \in \mathbb C\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.