论文标题

在$ e $ $ - 树木和蜘蛛的积极性上

On the $e$-positivity of trees and spiders

论文作者

Zheng, Kai

论文摘要

我们证明,对于任何至少六个顶点的树,其色度对称函数不是$ e $ prositive,也就是说,它不能写成基本对称函数的非负线性组合。这取得了重大进展,朝着最新的达尔伯格(Dahlberg),她和范·威利根堡(Van Willigenburg)的猜想,他们猜想了所有树木至少四个树木至少四个树木的结果。我们还提供了一系列条件,这些条件可以识别何时蜘蛛的色素对称函数,该树是由末端识别的多个路径组成的树,不是$ e $ sostive。这些条件还推广到具有切割顶点的树木和图形。最后,通过应用Orellana和Scott的结果,我们提供了一种方法,可以在蜘蛛的色度对称函数的基本对称函数扩展中计算某些系数,从而导致蜘蛛的进一步$ e $阳性条件。

We prove that for any tree with a vertex of degree at least six, its chromatic symmetric function is not $e$-positive, that is, it cannot be written as a nonnegative linear combination of elementary symmetric functions. This makes significant progress towards a recent conjecture of Dahlberg, She, and van Willigenburg, who conjectured the result for all trees with a vertex of degree at least four. We also provide a series of conditions that can identify when the chromatic symmetric function of a spider, a tree consisting of multiple paths identified at an end, is not $e$-positive. These conditions also generalize to trees and graphs with cut vertices. Finally, by applying a result of Orellana and Scott, we provide a method to inductively calculate certain coefficients in the elementary symmetric function expansion of the chromatic symmetric function of a spider, leading to further $e$-positivity conditions for spiders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源