论文标题

学到的近端网络用于定量敏感性映射

Learned Proximal Networks for Quantitative Susceptibility Mapping

论文作者

Lai, Kuo-Wei, Aggarwal, Manisha, van Zijl, Peter, Li, Xu, Sulam, Jeremias

论文摘要

定量敏感性映射(QSM)通过求解磁共振(MR)相测量的组织磁敏感性分布,通过求解不足的偶极反转问题。常规的单向QSM方法通常采用正则化策略来稳定这种反转,但可能会遭受划痕或过度平滑的折磨。多重取向QSM,例如通过多重取向采样(COSMOS)计算易感性(COSMOS)可以提供良好的反转和无伪影解决方案,但具有昂贵的收购成本。另一方面,卷积神经网络(CNN)表现出医疗图像重建的巨大潜力,尽管通常具有有限的解释性。在这里,我们提出了一个博学的近端卷积神经网络(LP-CNN),用于以迭代性近端梯度下降方式解决不足的QSM偶极子反转问题。这种方法结合了数据驱动的恢复先验的优势和可以考虑偶极卷积的物理模型的迭代求解器的明显解释性。在培训期间,我们的LP-CNN通过其近端学习一个隐式正常器,从而使远期操作员与重建算法中数据驱动的参数之间的分离。更重要的是,该框架被认为是第一种自然可以处理任意数量的相位输入测量的深度学习QSM方法,而无需任何临时旋转或重新训练。我们证明,与传统和深度学习方法相比,LP-CNN提供了最先进的重建结果,同时允许在重建过程中提高灵活性。

Quantitative Susceptibility Mapping (QSM) estimates tissue magnetic susceptibility distributions from Magnetic Resonance (MR) phase measurements by solving an ill-posed dipole inversion problem. Conventional single orientation QSM methods usually employ regularization strategies to stabilize such inversion, but may suffer from streaking artifacts or over-smoothing. Multiple orientation QSM such as calculation of susceptibility through multiple orientation sampling (COSMOS) can give well-conditioned inversion and an artifact free solution but has expensive acquisition costs. On the other hand, Convolutional Neural Networks (CNN) show great potential for medical image reconstruction, albeit often with limited interpretability. Here, we present a Learned Proximal Convolutional Neural Network (LP-CNN) for solving the ill-posed QSM dipole inversion problem in an iterative proximal gradient descent fashion. This approach combines the strengths of data-driven restoration priors and the clear interpretability of iterative solvers that can take into account the physical model of dipole convolution. During training, our LP-CNN learns an implicit regularizer via its proximal, enabling the decoupling between the forward operator and the data-driven parameters in the reconstruction algorithm. More importantly, this framework is believed to be the first deep learning QSM approach that can naturally handle an arbitrary number of phase input measurements without the need for any ad-hoc rotation or re-training. We demonstrate that the LP-CNN provides state-of-the-art reconstruction results compared to both traditional and deep learning methods while allowing for more flexibility in the reconstruction process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源