论文标题
棱柱形成和de rham-witt形式
Prismatic cohomology and de Rham-Witt forms
论文作者
论文摘要
对于任何Prism $(a,d)$,我们构建了Fontaine的Map $ W_R(A/D)\ to A/DDACT(D)\ CDOTSDICTISCITCITCTISTICTICTICTicinginginginging^{R-1}(D)$。随后,我们在完美的情况下定义了从de rham-witt形式到棱柱形成的规范图,并证明这是同构。使用此结果,我们获得了$ p $ compled的多项式代数的明确描述,超过$ a/d $。
For any prism $(A, d)$, we construct an analogue of Fontaine's map $W_r(A/d) \to A/dϕ(d)\cdotsϕ^{r-1}(d)$. Subsequently, we define a canonical map from de Rham-Witt forms to prismatic cohomology in the perfect case and prove that it is an isomorphism. Using this result, we obtain an explicit description of the prismatic cohomology for a $p$-completed polynomial algebra over $A/d$.