论文标题
大X重新调整非对角线深度弹性的parton从D维重构
Large-x resummation of off-diagonal deep-inelastic parton scattering from d-dimensional refactorization
论文作者
论文摘要
在深度弹性散射中,非对角线派顿散射通道$ g+γ^*$和$ q+ϕ^*$在阈值$ x \至1 $的接近阈值附近供电。我们解决了近代领先的功率(NLP)重新调整大的双重对数$ 1-x $的大型双对数与强耦合中的所有订单,即使是在脱离diagonal dglap分裂内核中也存在的订单。发散卷积的出现阻止了从领先的电源重新召集中知道的分解方法的应用。使用$ d $维的一致性关系,需要在动量区域之间进行维度正则化的$ 1/ε$杆的取消,我们表明,在领先的对数秩序中重新启动了偏离派对派顿分离频道的重新点燃,可以从NLP Soft-Suft-Quargarithm的NLP Soft-Quargarithms的近来构想中引导。特别是,我们根据VOGT先前直接从代数全阶表达式直接发现的一系列Bernoulli数字来得出DGLAP内核的结果。我们将Off-Diagonal DGLAP分裂功能和软夸克Sudakov对数确定为固有的两尺度量,以$ x $限制。我们使用这些量表和重新归一化组方法的重构化,灵感来自软共线有效理论来得出猜想的Sud-Quark Sudakov凸起公式。
The off-diagonal parton-scattering channels $g+γ^*$ and $q+ϕ^*$ in deep-inelastic scattering are power-suppressed near threshold $x\to 1$. We address the next-to-leading power (NLP) resummation of large double logarithms of $1-x$ to all orders in the strong coupling, which are present even in the off-diagonal DGLAP splitting kernels. The appearance of divergent convolutions prevents the application of factorization methods known from leading power resummation. Employing $d$-dimensional consistency relations from requiring $1/ε$ pole cancellations in dimensional regularization between momentum regions, we show that the resummation of the off-diagonal parton-scattering channels at the leading logarithmic order can be bootstrapped from the recently conjectured exponentiation of NLP soft-quark Sudakov logarithms. In particular, we derive a result for the DGLAP kernel in terms of the series of Bernoulli numbers found previously by Vogt directly from algebraic all-order expressions. We identify the off-diagonal DGLAP splitting functions and soft-quark Sudakov logarithms as inherent two-scale quantities in the large-$x$ limit. We use a refactorization of these scales and renormalization group methods inspired by soft-collinear effective theory to derive the conjectured soft-quark Sudakov exponentiation formula.