论文标题

在第3位,第三部分:分支叶子中的身份的部分同型二曲差异性

Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part II: Branching foliations

论文作者

Barthelmé, Thomas, Fenley, Sergio R., Frankel, Steven, Potrie, Rafael

论文摘要

我们研究了$ 3 $维度的部分双曲线差异性,这些差异性与身份同义,重点是Burago和Ivanov的中心稳定且中心不稳定\ Emph {分支}叶子的几何形状和动力学。这扩展了我们对动态相干情况下出现的真实叶面的研究(请参见\ emph {部分双曲线差异形态,与维度3,第I部分:动态连贯的情况}中的身份同义,Arxiv:1908.06227v3)。我们完成了Seifert纤维歧管中这种差异性的分类。在双曲线歧管中,我们表明,任何此类差异性都是动态连贯的,并且具有离散化的Anosov流量,或者是一个称为A \ Emph {double Translation}的新电位类别。

We study $3$-dimensional partially hyperbolic diffeomorphisms that are homotopic to the identity, focusing on the geometry and dynamics of Burago and Ivanov's center stable and center unstable \emph{branching} foliations. This extends our study of the true foliations that appear in the dynamically coherent case (see \emph{Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part I: The dynamically coherent case}, arxiv:1908.06227v3). We complete the classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic manifolds, we show that any such diffeomorphism is either dynamically coherent and has a power that is a discretized Anosov flow, or is of a new potential class called a \emph{double translation}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源