论文标题

关于使用自动磨石车辆的最先进的云服务集成功能的研究

Study on State-of-the-art Cloud Services Integration Capabilities with Autonomous Ground Vehicles

论文作者

Damacharla, Praveen, Mehta, Dhwani, Javaid, Ahmad Y, Devabhaktuni, Vijay K.

论文摘要

计算和智能是对自动磨碎车辆(AGV)准确性能的实质要求。在这种情况下,除了在车载计算机上,云服务的使用还可以增强AGV的计算和智能功能。此外,云系统中处理的大量数据有助于板载系统的整体性能和功能。这项研究需要进行定性分析,以收集有关领先的云服务提供商在AGV运营中的适用性的见解。这些服务包括Google Cloud,Microsoft Azure,Amazon AWS和IBM Cloud。该研究始于对AGV技术要求的简要回顾,这些要求是确定确定最合适的云服务的理由所必需的。定性分析研究并探讨了云服务对拟议的广义AGV的架构集成,性能和可管理性的适用性。我们的发现得出的结论是,可以通过最先进的云服务来支持广义的AGV体系结构,但是在主要计算和二级计算需求之间应该有明确的分离线。此外,我们的结果在使用云服务并防止其在实时AGV操作中使用时显示出明显的滞后。

Computing and intelligence are substantial requirements for the accurate performance of autonomous ground vehicles (AGVs). In this context, the use of cloud services in addition to onboard computers enhances computing and intelligence capabilities of AGVs. In addition, the vast amount of data processed in a cloud system contributes to overall performance and capabilities of the onboard system. This research study entails a qualitative analysis to gather insights on the applicability of the leading cloud service providers in AGV operations. These services include Google Cloud, Microsoft Azure, Amazon AWS, and IBM Cloud. The study begins with a brief review of AGV technical requirements that are necessary to determine the rationale for identifying the most suitable cloud service. The qualitative analysis studies and addresses the applicability of the cloud service over the proposed generalized AGV's architecture integration, performance, and manageability. Our findings conclude that a generalized AGV architecture can be supported by state-of-the-art cloud service, but there should be a clear line of separation between the primary and secondary computing needs. Moreover, our results show significant lags while using cloud services and preventing their use in real-time AGV operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源