论文标题

人工智能在急诊科评估CCTA评估期间有助于排除冠状动脉粥样硬化:准备现实世界中的申请

Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency Department: Preparing an Application for Real-World Use

论文作者

White, Richard D., Erdal, Barbaros S., Demirer, Mutlu, Gupta, Vikash, Bigelow, Matthew T., Dikici, Engin, Candemir, Sema, Galizia, Mauricio S., Carpenter, Jessica L., Donnell, Thomas P. O, Halabi, Abdul H., Prevedello, Luciano M.

论文摘要

急诊室(ED)中胸痛患者(CCTA)评估冠状动脉层析成像(CCTA)被认为合适。虽然负面的CCTA解释支持直接从ED中出院,但仍需要进行劳动密集型分析,并准确地危害了分心。我们描述了人工智能(AI)算法和工作流程的发展,用于协助解释医生进行CCTA筛查,以缺乏冠状动脉粥样硬化。两阶段方法由(1)阶段1组成 - 集中于在平衡研究人群中对血管中心中心提取分类的算法的开发和初步测试(n = 500,疾病患病率50%)通过回顾性随机案例选择得出; (2)第2阶段 - 与ED胸脚痛系列中更真实的研究人群(n = 100,疾病患病率为28%)对开发算法进行模拟临床试验。这允许对基于AI的CCTA筛查应用程序进行预部部门评估,该应用程序提供了整合到临床能力的观众中的算法推理结果的划分算法图形显示。算法性能评估在接收器操作 - 特征曲线(AUC-ROC)下使用的区域;混淆矩阵反映了地面真相与AI的确定。基于血管的算法表现出强劲的性能,而AUC-ROC = 0.96。在第1阶段和第2阶段,与疾病的患病率差异无关,在案例水平上的负预测值在95%时都非常高。第2阶段的算法工作流程过程的完成率(在55-80秒内为96%的推理结果)取决于足够的图像质量。该AI应用有可能协助CCTA解释,以帮助解脱胸膜表现中的动脉粥样硬化。

Coronary Computed Tomography Angiography (CCTA) evaluation of chest-pain patients in an Emergency Department (ED) is considered appropriate. While a negative CCTA interpretation supports direct patient discharge from an ED, labor-intensive analyses are required, with accuracy in jeopardy from distractions. We describe the development of an Artificial Intelligence (AI) algorithm and workflow for assisting interpreting physicians in CCTA screening for the absence of coronary atherosclerosis. The two-phase approach consisted of (1) Phase 1 - focused on the development and preliminary testing of an algorithm for vessel-centerline extraction classification in a balanced study population (n = 500 with 50% disease prevalence) derived by retrospective random case selection; and (2) Phase 2 - concerned with simulated-clinical Trialing of the developed algorithm on a per-case basis in a more real-world study population (n = 100 with 28% disease prevalence) from an ED chest-pain series. This allowed pre-deployment evaluation of the AI-based CCTA screening application which provides a vessel-by-vessel graphic display of algorithm inference results integrated into a clinically capable viewer. Algorithm performance evaluation used Area Under the Receiver-Operating-Characteristic Curve (AUC-ROC); confusion matrices reflected ground-truth vs AI determinations. The vessel-based algorithm demonstrated strong performance with AUC-ROC = 0.96. In both Phase 1 and Phase 2, independent of disease prevalence differences, negative predictive values at the case level were very high at 95%. The rate of completion of the algorithm workflow process (96% with inference results in 55-80 seconds) in Phase 2 depended on adequate image quality. There is potential for this AI application to assist in CCTA interpretation to help extricate atherosclerosis from chest-pain presentations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源