论文标题

3维Sasaki的斜体和legendre null曲线几乎接触b-近似歧管

Slant and Legendre Null Curves in 3-Dimensional Sasaki-like Almost Contact B-Metric Manifolds

论文作者

Nakova, Galia, Zamkovoy, Simeon

论文摘要

本文中的研究对象是3维Sasaki的几乎接触式B-近似歧管中的倾斜和传说无效的曲线。对于所检查的曲线,我们用歧管上的结构来表达将原始参数和相应曲线区分的原始参数以及相应曲线的一般框架和相应曲线的框架。我们证明,当且仅当考虑到考虑歧管的特定函数是常数时,框架零倾斜和legendre曲线的曲率是常数。我们发现倾斜的无效曲线是通用的螺旋,而传说中的null曲线是无数立方体。对于某些研究的曲线,我们表明它们是相对于歧管上相关的b-metric的非无效倾斜或legendre曲线。我们举例说明了检查的曲线。其中一些是在三维谎言组中构造的,作为sasaki样歧管,并获得了矩阵表示。

Object of study in the present paper are slant and Legendre null curves in 3-dimensional Sasaki-like almost contact B-metric manifolds. For the examined curves we express the general Frenet frame and the Frenet frame for which the original parameter is distinguished, as well as the corresponding curvatures, in terms of the structure on the manifold. We prove that the curvatures of a framed null slant and Legendre curve are constants if and only if a specific function for the considered manifolds is a constant. We find a necessary and sufficient condition a slant null curve to be a generalized helix and a Legendre null curve to be a null cubic. For some of investigated curves we show that they are non-null slant or Legendre curves with respect to the associated B-metric on the manifold. We give examples of the examined curves. Some of them are constructed in a 3-dimensional Lie group as Sasaki-like manifold and their matrix representation is obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源