论文标题

科学文章建议:利用普通作者关系和历史偏好

Scientific Article Recommendation: Exploiting Common Author Relations and Historical Preferences

论文作者

Xia, Feng, Liu, Haifeng, Lee, Ivan, Cao, Longbing

论文摘要

科学文章推荐系统在研究人员在即将到来的大型学术数据时代检索感兴趣的科学文章中起着越来越重要的作用。大多数现有的研究都为所有目标研究人员设计了统一的方法,因此,无论如何在哪种情况下,都会运行相同的算法为所有研究人员提出建议。但是,不同的研究人员可能具有自己的特征,并且可能有相应的方法为他们提供更好的建议。在本文中,我们提出了一种新颖的推荐方法,该方法结合了有关文章之间的共同作者关系的信息(即,两篇具有同一作者的文章)。我们方法的基本原理是,研究人员经常搜索同一作者发表的文章。由于并非所有研究人员都有这样的基于作者的搜索模式,因此我们提出了两个功能,这些功能是根据有关具有共同作者关系的成对文章的信息来定义的,并经常出现在作者中,以确定目标研究人员的建议。我们在现实世界数据集上进行的广泛实验表明,定义的特征可有效确定相关的目标研究人员,并且与基线方法相比,提出的方法为相关研究人员提供了更准确的建议。

Scientific article recommender systems are playing an increasingly important role for researchers in retrieving scientific articles of interest in the coming era of big scholarly data. Most existing studies have designed unified methods for all target researchers and hence the same algorithms are run to generate recommendations for all researchers no matter which situations they are in. However, different researchers may have their own features and there might be corresponding methods for them resulting in better recommendations. In this paper, we propose a novel recommendation method which incorporates information on common author relations between articles (i.e., two articles with the same author(s)). The rationale underlying our method is that researchers often search articles published by the same author(s). Since not all researchers have such author-based search patterns, we present two features, which are defined based on information about pairwise articles with common author relations and frequently appeared authors, to determine target researchers for recommendation. Extensive experiments we performed on a real-world dataset demonstrate that the defined features are effective to determine relevant target researchers and the proposed method generates more accurate recommendations for relevant researchers when compared to a Baseline method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源