论文标题
Sup-Convolution的尖锐L1不平等现象
Sharp L1 Inequalities for Sup-Convolution
论文作者
论文摘要
给定一个紧凑的凸域$ c \ subset \ mathbb {r}^k $和有界的可测量函数$ f_1,\ ldots,f_n:c \ to \ to \ mathbb {r} $,定义sup-convolution $(f_1 \ ast \ ast \ ast \ ast \ ldots \ as s f_n) $ f_1(x_1),\ ldots,f_n(x_n)$上的所有$ x_1,\ ldots,x_n \ in c $,平均为$ z $。继续进行Figalli和Jerison的研究,以及现有的线性稳定性作者Brunn-Minkowski不平等,以相等的设置,对于$ k \ le 3 $,我们找到了最佳常数$ c_ {k,n} $,因此,$ c_ {k,n} $,以便$ \ int_c f^{\ ast n} n}(x) - x) - x) - x \ ge(x)-f(x)-f(x) - x) c_ {k,n} \ int_c \ text {co}(f)(x)-f(x)dx $$其中$ \ text {co}(f)$是$ f $的上凸壳。此外,我们显示$ c_ {k,n} = 1-o(\ frac {1} {n})$ for固定$ k $,并证明了两个不同功能的类似最佳不等式。关键的几何见解是根据$ \ text {co}(f)$接近$ f $的一组点的几何形状,将$ c $ $ c $的多面近似值分解为超图像。
Given a compact convex domain $C\subset \mathbb{R}^k$ and bounded measurable functions $f_1,\ldots,f_n:C\to \mathbb{R}$, define the sup-convolution $(f_1\ast \ldots \ast f_n)(z)$ to be the supremum average value of $f_1(x_1),\ldots,f_n(x_n)$ over all $x_1,\ldots,x_n\in C$ which average to $z$. Continuing the study by Figalli and Jerison and the present authors of linear stability for the Brunn-Minkowski inequality with equal sets, for $k\le 3$ we find the optimal constants $c_{k,n}$ such that $$\int_C f^{\ast n}(x)-f(x) dx \ge c_{k,n}\int_C\text{co}(f)(x)-f(x) dx$$ where $\text{co}(f)$ is the upper convex hull of $f$. Additionally, we show $c_{k,n}=1-O(\frac{1}{n})$ for fixed $k$ and prove an analogous optimal inequality for two distinct functions. The key geometric insight is a decomposition of polytopal approximations of $C$ into hypersimplices according to the geometry of the set of points where $\text{co}(f)$ is close to $f$.