论文标题
布朗尼运动的中央限制定理在捏性负曲率中
Central limit theorem of Brownian motions in pinched negative curvature
论文作者
论文摘要
我们证明,在有限体积的riemannian歧管的通用覆盖物上,呈缝合负曲率的Riemannian歧管的通用覆盖物引起的随机变量的中心极限定理。我们进一步提供了布朗尼运动的一些千古特性,以及将中心极限定理应用于捏合负曲率中的地球流动的动力学。
We prove the central limit theorem of random variables induced by distances to Brownian paths and Green functions on the universal cover of Riemannian manifolds of finite volume with pinched negative curvature. We further provide some ergodic properties of Brownian motions and an application of the central limit theorem to the dynamics of geodesic flows in pinched negative curvature.