论文标题

Anosov表示,强烈凸起的共反应组和弱特征值差距

Anosov representations, strongly convex cocompact groups and weak eigenvalue gaps

论文作者

Tsouvalas, Konstantinos

论文摘要

我们将单词双曲线基团的Anosov表示的表征分解为实际的半圣像谎言群体,这是在Gromov边界上的模棱两可的限制图,Cartan特性和Guichard-Guéritaud-Kassel-Kassel-Kassel-Kassel-Wienhard引入的统一间隙求和性属性。我们还研究了有限生成的群体的表示,这些群体满足特征值中弱均匀差异的形式,并确立了作为Anosov的条件。作为一个应用程序,我们还获得了投影线性组$ \ mathsf {pgl} _d(\ Mathbb {r})$的强烈凸COCOCOCOCACT子组的表征。

We provide characterizations of Anosov representations of word hyperbolic groups into real semisimple Lie groups in terms of the existence of equivariant limit maps on the Gromov boundary, the Cartan property and the uniform gap summation property introduced by Guichard-Guéritaud-Kassel-Wienhard. We also study representations of finitely generated groups satisfying weak uniform gaps in eigenvalues and establish conditions to be Anosov. As an application, we also obtain a characterization of strongly convex cocompact subgroups of the projective linear group $\mathsf{PGL}_d(\mathbb{R})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源