论文标题
连接的不完整偏好
Connected Incomplete Preferences
论文作者
论文摘要
本文探讨了一类新的不完整偏好,称为“连接的偏好”,其中最大可比性在拓扑上连接。我们提供了必要和足够的条件,以连接连接。我们还表征了它们的最大域的可比性。我们的结果将选择空间的拓扑特性与偏好结构联系起来,从而扩展了决策理论的经典发现,从而提供了经济模型中不完整的新观点。
This paper explores a new class of incomplete preferences, termed "connected preferences", in which maximal domains of comparability are topologically connected. We provide necessary and sufficient conditions for continuous preferences to be connected. We also characterize their maximal domains of comparability. Our results extend classical findings in decision theory by linking topological properties of the choice space with the structure of preferences, offering a novel perspective on incompleteness in economic models.