论文标题

推荐信的不同影响对大学录取:观察性研究中亚组效应的近似平衡权重

Varying impacts of letters of recommendation on college admissions: Approximate balancing weights for subgroup effects in observational studies

论文作者

Ben-Michael, Eli, Feller, Avi, Rothstein, Jesse

论文摘要

在2016 - 17年度录取周期期间的一项试点计划中,伯克利分校邀请许多申请人入学,以提交推荐信。我们使用该试点作为观察研究的基础,以了解提交推荐信对随后入院的影响,目的是估计预定的亚组的影响如何变化。但是,在观察性研究中,了解这种变异是具有挑战性的,因为估计的影响既反映了实际的治疗效应差异和跨组之间的协变量平衡的差异。为了解决这个问题,我们开发了平衡权重,这些权重可以直接优化子组中的``本地平衡'',同时维持经过处理和控制单位之间的全球协变量平衡。然后,我们证明该方法具有双重表示形式,即具有分层倾向分数模型的反向倾向得分加权。在加州大学伯克利分校的试点研究中,我们提出的方法可以产生出色的本地和全球平衡,这与更多传统的加权方法不同,这些方法无法平衡亚组中的协变量。我们发现,推荐信的影响随预测的入院概率而增加,而代表性不足的少数民族申请人的差异也不同。

In a pilot program during the 2016-17 admissions cycle, the University of California, Berkeley invited many applicants for freshman admission to submit letters of recommendation. We use this pilot as the basis for an observational study of the impact of submitting letters of recommendation on subsequent admission, with the goal of estimating how impacts vary across pre-defined subgroups. Understanding this variation is challenging in observational studies, however, because estimated impacts reflect both actual treatment effect variation and differences in covariate balance across groups. To address this, we develop balancing weights that directly optimize for ``local balance'' within subgroups while maintaining global covariate balance between treated and control units. We then show that this approach has a dual representation as a form of inverse propensity score weighting with a hierarchical propensity score model. In the UC Berkeley pilot study, our proposed approach yields excellent local and global balance, unlike more traditional weighting methods, which fail to balance covariates within subgroups. We find that the impact of letters of recommendation increases with the predicted probability of admission, with mixed evidence of differences for under-represented minority applicants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源