论文标题

反转对称性的地平头发

Horizon Hair from Inversion Symmetry

论文作者

Fernandes, Karan, Ghosh, Debodirna, Virmani, Amitabh

论文摘要

极端的Reissner-Nordström解决方案具有离散的共形等轴测图,将未来的事件范围映射到未来的无效无穷大,反之亦然,是沙发 - 倾斜静脉均衡。我们根据这种对称性研究了极端的Reissner-Nordström解决方案上的探针麦克斯韦场的动力学。我们提出了与反转对称性兼容的量规固定。量规固定使我们能够将未来视野的量规参数与未来的空无度联系起来,这进一步使我们能够研究极端Reissner-NordströmBlackHole外部的大型对称性的全球电荷。在此过程中,我们分别构建了纽曼 - 奔驰和aretakis,例如沿未来的无限无限和未来事件范围的保守数量,并通过沙发 - 倾斜反演对称性对其进行关联。

The extreme Reissner-Nordström solution has a discrete conformal isometry that maps the future event horizon to future null infinity and vice versa, the Couch-Torrence inversion isometry. We study the dynamics of a probe Maxwell field on the extreme Reissner-Nordström solution in light of this symmetry. We present a gauge fixing that is compatible with the inversion symmetry. The gauge fixing allows us to relate the gauge parameter at the future horizon to future null infinity, which further allows us to study global charges for large gauge symmetries in the exterior of the extreme Reissner-Nordström black hole. Along the way, we construct Newman-Penrose and Aretakis like conserved quantities along future null infinity and the future event horizon, respectively, and relate them via the Couch-Torrence inversion symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源