论文标题
中子恒星合并GW170817的数值相对性模拟:长期残余演变,风,残余磁盘和核合成
Numerical Relativity Simulations of the Neutron Star Merger GW170817: Long-Term Remnant Evolutions, Winds, Remnant Disks, and Nucleosynthesis
论文作者
论文摘要
我们介绍了中子星级残留物中的动力喷射,风和核合成的系统数值余化性研究。与GW170817兼容的CHIRP质量,不同的质量比和五个微物理方程(EOS)的二进制文件通过近似中微子的转运和磁流失动力学湍流模拟,最高可达100毫米的磁中微子动力学湍流。从中子恒星残留到磁盘传播的螺旋密度波触发质量磁通$ {\ sim} 0.1 { - } 0.5 \,{\ rm m_ \ odot/s} $的风,只要残留物不倒于黑洞,就可以持续进行整个模拟。这条风具有平均电子分数$ \ gtrsim 0.3 $和平均速度$ {\ sim} 0.1-0.17 \,$ c,因此是生产弱$ r $ $ process元素(质量$ $ a <195 $)的网站。周围长寿命残余物的磁盘有质量$ {\ sim} 0.1 { - } 0.2 \,{\ rm m_ \ odot} $,温度在$ \ lyssim10 \ $ \ lyssim10 \,内部边缘附近的$ mev上达到$ \ simsim10 \,以及在震惊的特征性双向分布中,导致震惊的双向分布,这是由于震惊而通过迪斯克传播而引起的。在我们的目标模拟中计算出的动力学和螺旋波喷射与使用两个组件Kilonova模型从AT2017GFO推断的模拟不兼容。相反,他们表明包括磁盘风在内的多组分Kilonova模型是解释AT2017GFO的必要条件。在可比较的质量长期合并中,合并动力弹出和螺旋波风中的核合成可靠地说明所有$ r $ $ - 过程峰,从质量$ {\ sim} 75 $到activinides到actacinides,到actacinides,以太阳能丰度。总丰度范围弱取决于EOS,而质量比会影响第一峰要素的产生。
We present a systematic numerical-relativity study of the dynamical ejecta, winds and nucleosynthesis in neutron star merger remnants. Binaries with the chirp mass compatible with GW170817, different mass ratios, and five microphysical equations of state (EOS) are simulated with an approximate neutrino transport and a subgrid model for magnetohydrodynamics turbulence up to 100 milliseconds postmerger. Spiral density waves propagating from the neutron star remnant to the disk trigger a wind with mass flux ${\sim}0.1{-}0.5\,{\rm M_\odot/s}$ persisting for the entire simulation as long as the remnant does not collapse to black hole. This wind has average electron fraction $\gtrsim 0.3$ and average velocity ${\sim}0.1-0.17\,$c and thus is a site for the production of weak $r$-process elements (mass number $A<195$). Disks around long-lived remnants have masses ${\sim}0.1{-}0.2\,{\rm M_\odot}$, temperatures peaking at $\lesssim10\,$MeV near the inner edge, and a characteristic double-peak distribution in entropy resulting from shocks propagating through the disk. The dynamical and spiral-wave ejecta computed in our targeted simulations are not compatible with those inferred from AT2017gfo using two-components kilonova models. Rather, they indicate that multi-component kilonova models including disk winds are necessary to interpret AT2017gfo. The nucleosynthesis in the combined dynamical ejecta and spiral-wave wind in the comparable-mass long-lived mergers robustly accounts for all the $r$-process peaks, from mass number ${\sim}75$ to actinides in terms of solar abundances. Total abundandes are weakly dependent on the EOS, while the mass ratio affect the production of first peak elements.