论文标题
可重新配置的振荡器平台的实验证明,以解决最大切割问题
Experimental Demonstration of a Reconfigurable Coupled Oscillator Platform to Solve the Max-Cut Problem
论文作者
论文摘要
在这项工作中,我们在实验上证明了30个松弛振荡器的集成电路(IC)具有可重构电容耦合,以解决NP-HARD最大切割(最大切割)问题。我们表明,在外部第二谐波注射信号的影响下,振荡器相表现出两部分,可用于计算高质量的近似最大切割溶液。利用所有可重新配置的耦合体系结构,我们使用随机生成的大小和边缘密度的随机图形实例对振荡器的计算属性进行了实验评估。此外,将最大切割溶液与最佳值进行比较,我们表明振荡器(简单后处理之后)产生的最大切割量在36个测得的图中的28个中的最佳值的99%以内;重要的是,振荡器在密集的图中特别有效,最大切割量在九个测得的图形中的七个,边缘密度为0.8。我们的工作标志着为硬组合优化问题提供高效,室温兼容的非树硬件求解器迈出的一步。
In this work, we experimentally demonstrate an integrated circuit (IC) of 30 relaxation oscillators with reconfigurable capacitive coupling to solve the NP-Hard Maximum Cut (Max-Cut) problem. We show that under the influence of an external second-harmonic injection signal, the oscillator phases exhibit a bi-partition which can be used to calculate a high quality approximate Max-Cut solution. Leveraging the all-to-all reconfigurable coupling architecture, we experimentally evaluate the computational properties of the oscillators using randomly generated graph instances of varying size and edge density . Further, comparing the Max-Cut solutions with the optimal values, we show that the oscillators (after simple post-processing) produce a Max-Cut that is within 99% of the optimal value in 28 of the 36 measured graphs; importantly, the oscillators are particularly effective in dense graphs with the Max-Cut being optimal in seven out of nine measured graphs with edge density 0.8. Our work marks a step towards creating an efficient, room-temperature-compatible non-Boolean hardware-based solver for hard combinatorial optimization problems.