论文标题
J-PAS:通过人工神经网络测量排放线
J-PAS: Measuring emission lines with artificial neural networks
论文作者
论文摘要
在整个本文中,我们提出了一种新方法,可检测和测量J-PAS中最高$ z = 0.35 $的排放线。 J-PAS将在未来几年内使用56个光度带观察到北方天空的$ 8000 $ 〜D $^2 $。这样的数据释放使我们有机会采用机器学习方法来克服与光度数据相关的困难。我们使用了经过训练和测试的人工神经网络(ANN),并使用来自Califa,漫画和SDSS光谱的合成J-PAS光度法进行了测试。我们执行两项任务:首先,我们根据$Hα$,$Hβ$,$ [NII] {λ6584} $和$ [OIIII] {OIIII] {λ5007} $线的等效宽度(ew)的值将星系群分为两组。然后,我们训练一个ANN分配给每个Galaxy A组。我们能够将它们分类为可在J-PA中测量的光度红移的典型不确定性。其次,我们利用另一个ANN来确定这些EW的值。随后,我们获得了$ [nii]/hα$,$ [oiii]/hβ$,\ ion {o} {3} {3} \ ion {n} {2} {2}比率恢复了bpt图。我们在两个训练样本中研究了ANN的性能:一个仅由漫画和Califa(Calma set)的合成J-PAS摄影光谱(J-Spectra)组成,另一个由SDSS星系组成。我们可以从EWS的测定中正确复制星系的主要序列。在CALMA训练套件中,我们达到0.093和0.081 DEX的$ [NII]/Hα$和$ [OIII]/Hβ$比率在SDSS测试样品中。然而,我们发现在托管AGN的星系中,在高值下对这些比率的低估。我们还展示了用于培训和测试模型的数据集的重要性。 ANN对于克服先前预期的局限性在J-PAS等调查中的检测和测量方面非常有用。
Throughout this paper we present a new method to detect and measure emission lines in J-PAS up to $z = 0.35$. J-PAS will observe $8000$~deg$^2$ of the northern sky in the upcoming years with 56 photometric bands. The release of such amount of data brings us the opportunity to employ machine learning methods in order to overcome the difficulties associated with photometric data. We used Artificial Neural Networks (ANNs) trained and tested with synthetic J-PAS photometry from CALIFA, MaNGA, and SDSS spectra. We carry out two tasks: firstly, we cluster galaxies in two groups according to the values of the equivalent width (EW) of $Hα$, $Hβ$, $[NII]{λ6584}$, and $ [OIII]{λ5007}$ lines measured in the spectra. Then, we train an ANN to assign to each galaxy a group. We are able to classify them with the uncertainties typical of the photometric redshift measurable in J-PAS. Secondly, we utilize another ANN to determine the values of those EWs. Subsequently, we obtain the $[NII]/Hα$, $[OIII]/Hβ$, and \ion{O}{3}\ion{N}{2} ratios recovering the BPT diagram . We study the performance of the ANN in two training samples: one is only composed of synthetic J-PAS photo-spectra (J-spectra) from MaNGA and CALIFA (CALMa set) and the other one is composed of SDSS galaxies. We can reproduce properly the main sequence of star forming galaxies from the determination of the EWs. With the CALMa training set we reach a precision of 0.093 and 0.081 dex for the $[NII]/Hα$ and $[OIII]/Hβ$ ratios in the SDSS testing sample. Nevertheless, we find an underestimation of those ratios at high values in galaxies hosting an AGN. We also show the importance of the dataset used for both training and testing the model. ANNs are extremely useful to overcome the limitations previously expected concerning the detection and measurements of the emission lines in surveys like J-PAS.