论文标题

在低压下进行热增强油回收模拟的多级破坏性策略

Multi-level Delumping Strategy for Thermal Enhanced Oil Recovery Simulations at Low Pressure

论文作者

Cremon, Matthias A., Gerritsen, Margot G.

论文摘要

我们提出了一种适合热增强油回收过程的多级破坏性方法,该方法在高温下为碳氢化合物成分蒸发,在气相下游移动,并将其浓缩回液相。为了降低计算成本,减少热储存模拟中使用的(伪 - )组件的数量是标准实践。根据保留在仿真中的碳氢化合物伪组件的数量和类型,我们可能无法捕获正确的位移,这是由于集体相位行为(FLASH)计算中的较大误差所致。我们通过多级方法解决该问题:我们使用最详细的流体描述使用从简短的模拟获得的数据,并利用该信息来指导Delumping Process。我们将温度用作组成的代理变量,并选择参考温度。我们从详细的运行中提取相应的参考组成,并使用它们将集总伪组件扩展到近似详细的组成。我们使用六个重油样品测试我们的方法,在两个不同的恢复过程中:热氮注入和原位燃烧(空气注射和放热氧化反应)。与使用伪组件相比,液体摩尔分数的平均误差减少了4-12次(取决于油样品),最大误差降低了6-48次。我们说明该方法可以手动添加有关某些油样品物理的更多信息。我们还讨论了如何有效选择参考温度。对于均匀采样的温度(在最低温度和最高温度之间),我们进行了一项灵敏度研究,使我们使用六个温度。我们同时运行了本地(模式搜索,PS)和全局(粒子群优化,PSO)无梯度优化方法。

We present a multi-level delumping method suitable for thermal enhanced oil recovery processes, for which hydrocarbon components are vaporized under high temperatures, move downstream in the gas phase and condense back to the liquid phase. To reduce the computational cost, it is standard practice to reduce the number of (pseudo-)components used in thermal reservoir simulation. Depending on the number and type of hydrocarbon pseudo-components retained in the simulations, we may not be able to capture the correct displacement due to large errors in the lumped phase behavior (flash) computations. We address that problem through a multi-level method: we use data obtained from a short simulation using the most detailed fluid description available, and leverage that information to guide a delumping process. We use temperature as a proxy variable for composition, and select reference temperatures. We extract the corresponding reference compositions from the detailed run and use them to extend the lumped pseudo-components to an approximate detailed composition. We test our method using six heavy oil samples, and under two different recovery processes: hot nitrogen injection and in-situ combustion (air injection and exothermic oxidation reactions). The average error on the liquid mole fraction is reduced by 4-12 times (depending on the oil samples) compared to the flash using pseudo-components, and the maximum error by 6-48 times. We illustrate that the method is amenable to manually adding more information about the physics of some oil samples. We also discuss how to efficiently pick the reference temperatures. For uniformly sampled temperatures (between a minimum and maximum temperature), we conduct a sensitivity study which led us to use six temperatures. We ran both local (Pattern Search, PS) and global (Particle Swarm Optimization, PSO) gradient-free optimization methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源