论文标题

JT重力和渐近Weil-Petersson体积

JT gravity and the asymptotic Weil-Petersson volume

论文作者

Kimura, Yusuke

论文摘要

通过在Riemann表面的模量上整合带有边界(称为“ Weil-Petersson体积”的边界的模量),以及在边界沿边界的Wiggles上的积分,可以给出jackiw-teitelboim(JT)重力的路径积分。 Weil-Petersson卷的确切计算$ v_ {g,n}(b_1,\ ldots,b_n)$当属$ g $变大时很难。 We utilize two partial differential equations known to hold on the Weil-Petersson volumes to estimate asymptotic behaviors of the volume with two boundaries $V_{g,2}(b_1, b_2)$ and the volume with three boundaries $V_{g,3}(b_1, b_2, b_3)$ when the genus $g$ is large.此外,我们在$ v_ {g,n}(b_1,\ ldots,b_n)$的渐近表达式上提出了一个猜想,当$ g $很大时。

A path integral in Jackiw-Teitelboim (JT) gravity is given by integrating over the volume of the moduli of Riemann surfaces with boundaries, known as the "Weil-Petersson volume," together with integrals over wiggles along the boundaries. The exact computation of the Weil-Petersson volume $V_{g,n}(b_1, \ldots, b_n)$ is difficult when the genus $g$ becomes large. We utilize two partial differential equations known to hold on the Weil-Petersson volumes to estimate asymptotic behaviors of the volume with two boundaries $V_{g,2}(b_1, b_2)$ and the volume with three boundaries $V_{g,3}(b_1, b_2, b_3)$ when the genus $g$ is large. Furthermore, we present a conjecture on the asymptotic expression for general $V_{g,n}(b_1, \ldots, b_n)$ with $n$ boundaries when $g$ is large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源