论文标题
在$ n \ leq 4 $标量的关键模型上,$ d =4-ε$
On critical models with $N\leq 4$ scalars in $d=4-ε$
论文作者
论文摘要
我们采用分析方法和数值方法的组合来研究最通用场理论的重新归一化群,而四分之一的相互作用则以$ d = 4-ε$,$ n = 3 $和$ n = 4 $ caluros。对于$ n = 3 $,我们发现它仅承认三个不可分配的关键点:带有$ o(3)$对称性的威尔逊 - 菲什勒,具有$ h_3 =(\ mathbb {z} _2)^3 \ rtimes s_3 $对称的立方体,与$ o($ o(2)$ o_(Z)对于$ n = 4 $,我们的分析揭示了具有离散对称性和多达三个不同场异常的新的非平凡解决方案的存在。
We adopt a combination of analytical and numerical methods to study the renormalization group flow of the most general field theory with quartic interaction in $d=4-ε$ with $N=3$ and $N=4$ scalars. For $N=3$, we find that it admits only three nondecomposable critical points: the Wilson-Fisher with $O(3)$ symmetry, the cubic with $H_3=(\mathbb{Z}_2)^3\rtimes S_3$ symmetry, and the biconical with $O(2)\times \mathbb{Z}_2$. For $N=4$, our analysis reveals the existence of new nontrivial solutions with discrete symmetries and with up to three distinct field anomalous dimensions.