论文标题

关于算术和几何方式的不平等

Enhanced inequalities about arithmetic and geometric means

论文作者

Dai, Fang, Xia, Li-Gang

论文摘要

对于$ n $阳性数字($ a_k $,$ 1 \ leq k \ leq n $),对算术平均值($ a_n \ equiv \ equiv \ equaC {\ sum_ka_k} {n} {n} $)的不平等增强即,\ begin {equation} \ frac {g_n} {a_n} \ leq (\ frac {n- \ sum_ {k = 1}^mr_k} {n-m})^{1- \ frac {m} {n} {n}}}(π_{k = 1}^mr_k) $ a_k = a_nr_k $($ 1 \ leq k \ leq m \ leq n $) \ frac {1} {(1- \ frac {m} {n})π_{k = 1}^mr_k^{\ frac {-1} {-1} {n-m}}+\ \\ \\ \\ frac {1} {n} {n} {n} {n} {k = 1} $ a_k = g_nr_k $($ 1 \ leq k \ leq m \ leq n $)。这些界限要比S.〜H.〜Tung的工作[1]更好。

For $n$ positive numbers ($a_k$, $1\leq k \leq n$), enhanced inequalities about the arithmetic mean ($A_n \equiv \frac{\sum_ka_k}{n}$) and the geometric mean ($G_n\equiv \sqrt[n]{Π_ka_k}$) are found if some numbers are known, namely, \begin{equation} \frac{G_n}{A_n} \leq (\frac{n-\sum_{k=1}^mr_k}{n-m})^{1-\frac{m}{n}}(Π_{k=1}^mr_k)^{\frac{1}{n}} \:, \nonumber \end{equation} if we know $a_k=A_nr_k$ ($1\leq k\leq m\leq n$) for instance, and \begin{equation} \frac{G_n}{A_n} \leq \frac{1}{(1-\frac{m}{n})Π_{k=1}^mr_k^{\frac{-1}{n-m}}+\frac{1}{n}\sum_{k=1}^mr_k} \: ,\nonumber \end{equation} if we know $a_k=G_nr_k$ ($1\leq k\leq m \leq n$) for instance. These bounds are better than those derived from S.~H.~Tung's work [1].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源