论文标题

探索两分图中的顶点互动和绑带强度的凝聚力子图

Exploring Cohesive Subgraphs with Vertex Engagement and Tie Strength in Bipartite Graphs

论文作者

He, Yizhang, Wang, Kai, Zhang, Wenjie, Lin, Xuemin, Zhang, Ying

论文摘要

我们提出了一个新型的内聚力子图模型,称为$τ$ - 加长的$(α,β)$ - 核心(表示为$(α,β)_τ$ - 核),这是第一个考虑在双片图上既可以考虑绑带强度和顶点的互动。如果至少包含在$τ$蝴蝶($ 2 \ times2 $ -Bicliques)中,则边缘是一条强大的领带。 $(α,β)_τ$ core需要每个顶点上的每个顶点或下层至少具有$α$或$β$ stront Ties,鉴于强度级别$τ$。为了最佳地检索$(α,β)_τ$的顶点,我们构造索引$ i_ {α,β,τ} $以存储所有$(α,β)_τ$ -cors。提出了有效的优化技术来改善指数构建。为了使我们的想法在大图上实用,我们提出了2D-indexes $ i_ {α,β},i_ {β,β,τ} $和$ i_ {α,α,τ} $,以选择性地存储$(α,β)_τ$的顶点,以适用于$(α,β)_ ch $ - coce in Some $α,β$ $ coce。 2D索引更具空间效率,并且需要较小的施工时间,每个时间都可以支持$(α,β)_τ$ - 核查询。由于查询效率取决于输入参数和2D索引的选择,因此我们通过训练馈送前向前向神经网络来预测2D索引的最佳选择,以最大程度地减少查询时间。广泛的实验表明($ 1 $)$(α,β)_τ$ - 是一个有效的模型,可捕获独特而重要的内聚力子图; ($ 2 $)所提出的技术可显着提高索引构建和查询处理的效率。

We propose a novel cohesive subgraph model called $τ$-strengthened $(α,β)$-core (denoted as $(α,β)_τ$-core), which is the first to consider both tie strength and vertex engagement on bipartite graphs. An edge is a strong tie if contained in at least $τ$ butterflies ($2\times2$-bicliques). $(α,β)_τ$-core requires each vertex on the upper or lower level to have at least $α$ or $β$ strong ties, given strength level $τ$. To retrieve the vertices of $(α,β)_τ$-core optimally, we construct index $I_{α,β,τ}$ to store all $(α,β)_τ$-cores. Effective optimization techniques are proposed to improve index construction. To make our idea practical on large graphs, we propose 2D-indexes $I_{α,β}, I_{β,τ}$, and $I_{α,τ}$ that selectively store the vertices of $(α,β)_τ$-core for some $α,β$, and $τ$. The 2D-indexes are more space-efficient and require less construction time, each of which can support $(α,β)_τ$-core queries. As query efficiency depends on input parameters and the choice of 2D-index, we propose a learning-based hybrid computation paradigm by training a feed-forward neural network to predict the optimal choice of 2D-index that minimizes the query time. Extensive experiments show that ($1$) $(α,β)_τ$-core is an effective model capturing unique and important cohesive subgraphs; ($2$) the proposed techniques significantly improve the efficiency of index construction and query processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源