论文标题

拱廊:快速持续异常检测器

ARCADe: A Rapid Continual Anomaly Detector

论文作者

Frikha, Ahmed, Krompaß, Denis, Tresp, Volker

论文摘要

尽管持续的学习和异常检测在以前的作品中已经进行了充分研究,但它们的相交仍然没有探索。目前的工作解决了一个学习方案,其中模型必须逐步学习一系列异常检测任务,即只有从正常(多数)类中的示例可以训练的任务。我们定义了一个持续异常检测(CAD)的新型学习问题,并将其作为元学习问题提出。此外,我们提出了一个快速的持续异常检测器(街机),这是一种训练神经网络的方法,以应对这个新学习问题的主要挑战,即灾难性的遗忘和对多数级别的过度拟合。我们在三个数据集上实验的结果表明,在CAD问题设置中,距离不断学习和异常检测文献的表现大大优于基准。最后,我们对拟议的元学习算法产生的学习策略提供了更深入的见解。

Although continual learning and anomaly detection have separately been well-studied in previous works, their intersection remains rather unexplored. The present work addresses a learning scenario where a model has to incrementally learn a sequence of anomaly detection tasks, i.e. tasks from which only examples from the normal (majority) class are available for training. We define this novel learning problem of continual anomaly detection (CAD) and formulate it as a meta-learning problem. Moreover, we propose A Rapid Continual Anomaly Detector (ARCADe), an approach to train neural networks to be robust against the major challenges of this new learning problem, namely catastrophic forgetting and overfitting to the majority class. The results of our experiments on three datasets show that, in the CAD problem setting, ARCADe substantially outperforms baselines from the continual learning and anomaly detection literature. Finally, we provide deeper insights into the learning strategy yielded by the proposed meta-learning algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源