论文标题

合作双路径指标,用于几次学习

Cooperative Bi-path Metric for Few-shot Learning

论文作者

Wang, Zeyuan, Zhao, Yifan, Li, Jia, Tian, Yonghong

论文摘要

给定具有足够标记样品的基本类别的给定,几乎没有射击分类的目标是识别只有几个标记样品的新型类别的未标记样本。大多数现有方法仅关注新颖类的标记和未标记样本之间的关系,这些样本不会在基类中充分利用信息。在本文中,我们做出了两项贡献,以调查几个射击分类问题。首先,我们报告了一个简单有效的基线,以传统的监督学习方式对基础课程进行了培训,这可以与最新的状态取得可比的结果。其次,根据基线,我们提出了一个合作双路径指标进行分类,该指标利用基类和新颖类之间的相关性进一步提高了准确性。在两个广泛使用的基准测试的实验表明,我们的方法是一个简单有效的框架,并且在几个拍摄的分类字段中建立了新的最新状态。

Given base classes with sufficient labeled samples, the target of few-shot classification is to recognize unlabeled samples of novel classes with only a few labeled samples. Most existing methods only pay attention to the relationship between labeled and unlabeled samples of novel classes, which do not make full use of information within base classes. In this paper, we make two contributions to investigate the few-shot classification problem. First, we report a simple and effective baseline trained on base classes in the way of traditional supervised learning, which can achieve comparable results to the state of the art. Second, based on the baseline, we propose a cooperative bi-path metric for classification, which leverages the correlations between base classes and novel classes to further improve the accuracy. Experiments on two widely used benchmarks show that our method is a simple and effective framework, and a new state of the art is established in the few-shot classification field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源