论文标题

没有本地歧视性的经典性:纠缠和互补性

Classicality without local discriminability: decoupling entanglement and complementarity

论文作者

D'Ariano, Giacomo Mauro, Erba, Marco, Perinotti, Paolo

论文摘要

构建了所有系统都是经典的操作概率理论,并且构建了复合系统的所有纯状态。该理论具有构成任意数量系统的规则,并具有一组非平凡的转换。因此,我们证明纠缠的存在与不兼容测量值的存在无关。然后,我们研究了该理论中发生的各种现象 - 其中一些与经典和量子理论相矛盾 - 包括:克隆,纠缠交换,密集编码,经典能力的加性,非偶然的纠缠,非偶然的纠缠,超签名。从理论上讲,我们还证明了普遍处理器的存在。该理论是因果关系,并满足了无限制的假设。同时,它违反了量子理论所享有的许多信息理论原则,最值得注意的是:局部可区分性,国家平行组成的纯度和纯化。此外,我们介绍了一个详尽的程序来构建通用的操作概率理论,以及一套足够的条件来验证其一致性。此外,我们证明了对任意理论的平行组成规则的表征定理,并将其专门针对双向学理论的情况。我们得出结论指出一些开放问题。特别是,基于该理论的每个可分离状态都是纠缠状态的统计混合物,我们为存在地方现实的本体论模型提出了一个不做的猜想。

An operational probabilistic theory where all systems are classical, and all pure states of composite systems are entangled, is constructed. The theory is endowed with a rule for composing an arbitrary number of systems, and with a nontrivial set of transformations. Hence, we demonstrate that the presence of entanglement is independent of the existence of incompatible measurements. We then study a variety of phenomena occurring in the theory -- some of them contradicting both Classical and Quantum Theories -- including: cloning, entanglement swapping, dense coding, additivity of classical capacities, non-monogamous entanglement, hypersignaling. We also prove the existence, in the theory, of a universal processor. The theory is causal and satisfies the no-restriction hypothesis. At the same time, it violates a number of information-theoretic principles enjoyed by Quantum Theory, most notably: local discriminability, purity of parallel composition of states, and purification. Moreover, we introduce an exhaustive procedure to construct generic operational probabilistic theories, and a sufficient set of conditions to verify their consistency. In addition, we prove a characterisation theorem for the parallel composition rules of arbitrary theories, and specialise it to the case of bilocal-tomographic theories. We conclude pointing out some open problems. In particular, on the basis of the fact that every separable state of the theory is a statistical mixture of entangled states, we formulate a no-go conjecture for the existence of a local-realistic ontological model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源