论文标题

基于具有双卷积的复发单元的时空网络的车道检测模型

Lane Detection Model Based on Spatio-Temporal Network With Double Convolutional Gated Recurrent Units

论文作者

Zhang, Jiyong, Deng, Tao, Yan, Fei, Liu, Wenbo

论文摘要

车道检测是自动驾驶环境感知的必不可少和关键要素之一。已经提出了许多车道检测模型,在具有挑战性的条件下解决了车道检测,包括交点合并和分裂,曲线,边界,遮挡和场景类型的组合。然而,在未来的一段时间内,车道检测将仍然是一个空旷的问题。应对这些具有挑战性的场景的能力很大程度上影响了车道检测在高级驾驶员援助系统(ADASS)上的应用。在本文中,提出了具有双重卷积封闭复发单元(Convgrus)的时空网络,以解决具有挑战性的场景中的车道检测。 Convrus都具有相同的结构,但是我们网络中的位置和功能不同。一种用于提取车道标记最可能的低级特征的信息。提取的特征将其与某些块的输出相连后,将其输入到端到端网络的下一层中。另一个将一些连续的帧作为处理时空驾驶信息的输入。大规模Tusimple Lane标记挑战数据集和无监督的Lamas数据集的广泛实验表明,所提出的模型可以有效地检测到具有挑战性的驾驶场景中的车道。我们的模型可以胜过最先进的车道检测模型。

Lane detection is one of the indispensable and key elements of self-driving environmental perception. Many lane detection models have been proposed, solving lane detection under challenging conditions, including intersection merging and splitting, curves, boundaries, occlusions and combinations of scene types. Nevertheless, lane detection will remain an open problem for some time to come. The ability to cope well with those challenging scenes impacts greatly the applications of lane detection on advanced driver assistance systems (ADASs). In this paper, a spatio-temporal network with double Convolutional Gated Recurrent Units (ConvGRUs) is proposed to address lane detection in challenging scenes. Both of ConvGRUs have the same structures, but different locations and functions in our network. One is used to extract the information of the most likely low-level features of lane markings. The extracted features are input into the next layer of the end-to-end network after concatenating them with the outputs of some blocks. The other one takes some continuous frames as its input to process the spatio-temporal driving information. Extensive experiments on the large-scale TuSimple lane marking challenge dataset and Unsupervised LLAMAS dataset demonstrate that the proposed model can effectively detect lanes in the challenging driving scenes. Our model can outperform the state-of-the-art lane detection models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源