论文标题
跨国公司与非标准的变形
Multigrid with Nonstandard Coarsening
论文作者
论文摘要
我们考虑使用具有非标准的粗网格和粗级运算符的几何多移民在结构化网格上的泊松方程的数值解。我们是由开发高阶准确数值求解器的问题,用于使用填写网格的复杂几何形状上的椭圆边界值问题。填写网格通常以大型笛卡尔背景网格为主,因此高度需要笛卡尔网格的快速求解器。为了使网格产生灵活性,我们想考虑两个以外的更粗化因子,且较低的准确的粗级别近似值。我们表明,二阶精确的粗级近似值对于四阶或六阶准确的细水平有限差离散非常有效。我们研究了不同的盖尔金和非加勒金粗级操作员的使用。我们使用带有放松参数$ω$的红黑色Smoother。使用本地傅立叶分析,我们选择$ω$和粗级运算符来优化整体跨部收敛速率。通过在一个维度上使用红色黑色Smoothers的动机,这可能会导致直接求解器,以使标准的二阶准确离散化对Poisson的方程式,我们表明该直接溶解属性可以使用由红色黑色浓缩而产生的旋转网格扩展到两个维度。我们评估了在更一般的环境中使用红色粗糙的使用。我们还通过一般因素研究网格的变形,并表明在两个附近的一系列粗化因子中保留了良好的收敛速率。我们询问哪种粗化因子导致最有效的算法的问题。
We consider the numerical solution of Poisson's equation on structured grids using geometric multigrid with nonstandard coarse grids and coarse level operators. We are motivated by the problem of developing high-order accurate numerical solvers for elliptic boundary value problems on complex geometry using overset grids. Overset grids are typically dominated by large Cartesian background grids and thus fast solvers for Cartesian grids are highly desired. For flexibility in grid generation we would like to consider coarsening factors other than two, and lower-order accurate coarse-level approximations. We show that second-order accurate coarse-level approximations are very effective for fourth- or sixth-order accurate fine-level finite difference discretizations. We study the use of different Galerkin and non-Galerkin coarse-level operators. We use red-black smoothers with a relaxation parameter $ω$. Using local Fourier analysis we choose $ω$ and the coarse-level operators to optimize the overall multigrid convergence rate. Motivated by the use of red-black smoothers in one dimension that can result in a direct solver for the standard second-order accurate discretization to Poisson's equation, we show that this direct-solver property can be extended to two dimensions using a rotated grid that results from red-black coarsening. We evaluate the use of red-black coarsening in more general settings. We also study grid coarsening by a general factor and show that good convergence rates are retained for a range of coarsening factors near two. We ask the question of which coarsening factor leads to the most efficient algorithm.