论文标题

评估和预测学术文章影响的概述

An Overview on Evaluating and Predicting Scholarly Article Impact

论文作者

Bai, Xiaomei, Liu, Hui, Zhang, Fuli, Ning, Zhaolong, Kong, Xiangjie, Lee, Ivan, Xia, Feng

论文摘要

学术文章的影响反映了学术同龄人认可的学术成果的重要性,并且在评估研究人员,团队,机构和国家的科学成就方面通常起着至关重要的作用。它也用于满足学术和科学领域的各种需求,例如招聘决策,晋升和资助分配。本文对与文章影响评估和预测有关的最新进展进行了全面综述。 〜审查开始于分享对文章的一些见解影响研究,并概述了当前的研究状况。提出了一些核心方法和最新进度,以概述文章如何影响指标和预测来考虑整合多个网络。讨论了关键技术,包括统计分析,机器学习,数据挖掘和网络科学。特别是,我们强调了每种技术在文章影响研究中的重要应用。随后,我们讨论了文章影响研究的空旷问题和挑战。同时,这篇评论指出了一些重要的研究方向,包括通过考虑利益冲突,时间和位置信息,学术实体的各种分布以及崛起的恒星来影响评估。

Scholarly article impact reflects the significance of academic output recognised by academic peers, and it often plays a crucial role in assessing the scientific achievements of researchers, teams, institutions and countries. It is also used for addressing various needs in the academic and scientific arena, such as recruitment decisions, promotions, and funding allocations. This article provides a comprehensive review of recent progresses related to article impact assessment and prediction. The~review starts by sharing some insight into the article impact research and outlines current research status. Some core methods and recent progress are presented to outline how article impact metrics and prediction have evolved to consider integrating multiple networks. Key techniques, including statistical analysis, machine learning, data mining and network science, are discussed. In particular, we highlight important applications of each technique in article impact research. Subsequently, we discuss the open issues and challenges of article impact research. At the same time, this review points out some important research directions, including article impact evaluation by considering Conflict of Interest, time and location information, various distributions of scholarly entities, and rising stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源