论文标题
在ATLAS实验中弱混合角度测量中PDF不确定性的降低
Reduction of PDF uncertainty in the measurement of the weak mixing angle at the ATLAS experiment
论文作者
论文摘要
我们研究了有效的弱混合角$ \ sin^2θ_ {\ text {fext {eff}}^{\ ell} $在cern大型强子碰极(LHC)的测量中的Parton分布函数(PDF)不确定性。由于稀释作用,PDF诱导的不确定性在LHC的质子蛋白碰撞中很大。可以使用LHC的Drell-Yan向前不对称($ a_ {fb} $)来减少$ \ sin^2θ_ {\ text {fext {eff}}}^{\ ell} $测量的PDF不确定性。但是,当在$ a_ {fb} $数据分析中包括整个Lepton对时,PDF更新过程与$ \ sin^2θ_ {\ text {fext {eff}}}^{\ ell} $提取引导的偏见之间的相关性$ \ sin^2θ_ {\ text {eff}}}^{\ ell} $ value。从我们的研究中,我们发现,可以通过消除$ z $ pole区域的质量不变的质量来大大降低偏见,而大多数降低PDF不确定性的敏感性仍然存在。此外,已知Lepton在$ W $玻色子事件中充电不对称性,该事件的函数是带电瘦素的速度,$ a_ \ pm(η_\ ell)$,是另一个可观察到的可观察到的,可用于减少$ \ sin^2θ_{\ sun^eell pdf不确定性的pdf不确定性。 $ a_ \ pm(η_\ ell)$的约束与$ a_ {fb} $的约束是互补的,因此没有偏差会影响$ \ sin^2θ_{\ text {fext {eff}}}}^{\ ell} $提取。使用错误的PDF更新方法软件包({\ sc epump})进行研究,该方法基于Hessian更新方法。在本文中,使用CT14HERA2 PDF集作为示例。
We investigate the parton distribution function (PDF) uncertainty in the measurement of the effective weak mixing angle $\sin^2θ_{\text{eff}}^{\ell}$ at the CERN Large Hadron Collider (LHC). The PDF-induced uncertainty is large in the proton-proton collisions at the LHC due to the dilution effect. The measurement of the Drell-Yan forward-backward asymmetry ($A_{FB}$) at the LHC can be used to reduce the PDF uncertainty in the $\sin^2θ_{\text{eff}}^{\ell}$ measurement. However, when including the full mass range of lepton pairs in the $A_{FB}$ data analysis, the correlation between the PDF updating procedure and the $\sin^2θ_{\text{eff}}^{\ell}$ extraction leads to a sizable bias in the obtained $\sin^2θ_{\text{eff}}^{\ell}$ value. From our studies, we find that the bias can be significantly reduced by removing Drell-Yan events with invariant mass around the $Z$ pole region, while most of the sensitivity in reducing the PDF uncertainty remains. Furthermore, the lepton charge asymmetry in the $W$ boson events as a function of the rapidity of the charged leptons, $A_\pm(η_\ell)$, is known to be another observable which can be used to reduce the PDF uncertainty in the $\sin^2θ_{\text{eff}}^{\ell}$ measurement. The constraint from $A_\pm(η_\ell)$ is complementary to that from the $A_{FB}$, thus no bias affects the $\sin^2θ_{\text{eff}}^{\ell}$ extraction. The studies are performed using the Error PDF Updating Method Package ({\sc ePump}), which is based on the Hessian updating methods. In this article, the CT14HERA2 PDF set is used as an example.