论文标题

关于约束歧管的神经操纵计划

Neural Manipulation Planning on Constraint Manifolds

论文作者

Qureshi, Ahmed H., Dong, Jiangeng, Choe, Austin, Yip, Michael C.

论文摘要

任务约束的存在对运动计划构成了重大挑战。尽管最近有了所有进步,但对于大多数计划问题而言,现有算法在计算上仍然很昂贵。在本文中,我们介绍了受限的运动计划网络(COMPNET),这是第一个用于多模式运动学约束的神经计划器。我们的方法包括以下组成部分:i)约束和环境感知编码; ii)神经机器人配置生成器在约束歧管上/附近输出配置以及III)的双向计划算法,该算法采用生成的配置来创建可行的机器人运动轨迹。我们表明,COMPNET解决了涉及不受限制和受约束问题的实用运动计划任务。此外,它概括为对象的新位置,即在训练期间,在成功率很高的给定环境中没有看到。与最先进的运动计划算法相比,Compnet的表现要优于计算速度的数量级提高,方差的差异明显较低。

The presence of task constraints imposes a significant challenge to motion planning. Despite all recent advancements, existing algorithms are still computationally expensive for most planning problems. In this paper, we present Constrained Motion Planning Networks (CoMPNet), the first neural planner for multimodal kinematic constraints. Our approach comprises the following components: i) constraint and environment perception encoders; ii) neural robot configuration generator that outputs configurations on/near the constraint manifold(s), and iii) a bidirectional planning algorithm that takes the generated configurations to create a feasible robot motion trajectory. We show that CoMPNet solves practical motion planning tasks involving both unconstrained and constrained problems. Furthermore, it generalizes to new unseen locations of the objects, i.e., not seen during training, in the given environments with high success rates. When compared to the state-of-the-art constrained motion planning algorithms, CoMPNet outperforms by order of magnitude improvement in computational speed with a significantly lower variance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源