论文标题
分析澄清问题对会话搜索中文档排名的影响
Analysing the Effect of Clarifying Questions on Document Ranking in Conversational Search
论文作者
论文摘要
关于对话搜索的最新研究突出了混合量在对话中的重要性。为了启用混合宣传活动,系统应该能够向用户提出澄清问题。但是,在总体上排名文档时,尚未分析基础排名模型(支持对话搜索)来解释这些澄清问题和答案的能力。为此,我们在对话搜索数据集上分析了词汇排名模型的性能,并具有澄清的问题。我们在定量和定性上调查了澄清问题和用户答案的不同方面如何影响排名的质量。我们认为,基于这种混合定位环境中存在的明确反馈,需要对整个会话澄清进行一些细粒度的处理。在我们的发现中,我们引入了一个简单的基于启发式的词汇基线,该基线的表现极大地超过了现有的天真基线。我们的工作旨在增强我们对这项特定任务中面临的挑战的理解,并为更合适的对话排名模型的设计提供信息。
Recent research on conversational search highlights the importance of mixed-initiative in conversations. To enable mixed-initiative, the system should be able to ask clarifying questions to the user. However, the ability of the underlying ranking models (which support conversational search) to account for these clarifying questions and answers has not been analysed when ranking documents, at large. To this end, we analyse the performance of a lexical ranking model on a conversational search dataset with clarifying questions. We investigate, both quantitatively and qualitatively, how different aspects of clarifying questions and user answers affect the quality of ranking. We argue that there needs to be some fine-grained treatment of the entire conversational round of clarification, based on the explicit feedback which is present in such mixed-initiative settings. Informed by our findings, we introduce a simple heuristic-based lexical baseline, that significantly outperforms the existing naive baselines. Our work aims to enhance our understanding of the challenges present in this particular task and inform the design of more appropriate conversational ranking models.