论文标题

Diet-SNN:直接输入编码,并在深尖峰神经网络中进行泄漏和阈值优化

DIET-SNN: Direct Input Encoding With Leakage and Threshold Optimization in Deep Spiking Neural Networks

论文作者

Rathi, Nitin, Roy, Kaushik

论文摘要

由生物启发的尖峰神经网络(SNN),随着时间的推移分布的异步二进制信号(或尖峰)运行,可能会提高事件驱动的硬件的计算效率。最先进的SNN遭受了高推断潜伏期的影响,这是由于输入效率低下以及神经元参数的亚最佳设置(触发阈值和膜泄漏)。我们提出了Diet-SNN,这是一种低延迟的深尖峰网络,接受了梯度下降训练,以优化膜泄漏和发射阈值以及其他网络参数(重量)。 SNN的每一层的膜泄漏和阈值通过端到端的反向传播进行了优化,以在减小延迟时实现竞争精度。图像的模拟像素值直接应用于Diet-SNN的输入层,而无需转换为尖峰训练。第一个卷积层经过训练,可以将输入转换为尖峰,当膜电位越过训练有素的射击阈值时,泄漏的综合和火(LIF)神经元会整合加权输入并产生输出尖峰。受过训练的膜泄漏控制了输入信息的流动,并减轻了无关的输入,以增加网络卷积和密集层的激活稀疏性。降低的潜伏期与高激活稀疏性相结合,可在计算效率方面得到很大的提高。我们评估了来自CIFAR和Imagenet数据集的图像分类任务的Diet-SNN。我们在ImageNet数据集上使用5个时间段(推理潜伏期)的TOP-1精度为69%,其计算能量比等效标准ANN的计算能量少12倍。此外,与其他最先进的SNN型号相比,Diet-SNN执行20-500倍的推断速度更快。

Bio-inspired spiking neural networks (SNNs), operating with asynchronous binary signals (or spikes) distributed over time, can potentially lead to greater computational efficiency on event-driven hardware. The state-of-the-art SNNs suffer from high inference latency, resulting from inefficient input encoding, and sub-optimal settings of the neuron parameters (firing threshold, and membrane leak). We propose DIET-SNN, a low-latency deep spiking network that is trained with gradient descent to optimize the membrane leak and the firing threshold along with other network parameters (weights). The membrane leak and threshold for each layer of the SNN are optimized with end-to-end backpropagation to achieve competitive accuracy at reduced latency. The analog pixel values of an image are directly applied to the input layer of DIET-SNN without the need to convert to spike-train. The first convolutional layer is trained to convert inputs into spikes where leaky-integrate-and-fire (LIF) neurons integrate the weighted inputs and generate an output spike when the membrane potential crosses the trained firing threshold. The trained membrane leak controls the flow of input information and attenuates irrelevant inputs to increase the activation sparsity in the convolutional and dense layers of the network. The reduced latency combined with high activation sparsity provides large improvements in computational efficiency. We evaluate DIET-SNN on image classification tasks from CIFAR and ImageNet datasets on VGG and ResNet architectures. We achieve top-1 accuracy of 69% with 5 timesteps (inference latency) on the ImageNet dataset with 12x less compute energy than an equivalent standard ANN. Additionally, DIET-SNN performs 20-500x faster inference compared to other state-of-the-art SNN models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源