论文标题

(k; l) - 彩色和弗雷尔图表的表达式

(k; l)-Colourings and Ferrers Diagram Representations of Cographs

论文作者

Epple, Dennis A., Huang, Jing

论文摘要

对于一对自然数量$ k,l $,a $(k,l)$ - 颜色的颜色$ g $是$ g $的$ g $的分区(可能为空的)集合$ s_1,s_2,s_k $,s_k $,s_k $,$ c_1,$ c_1,c_2,c_2,c_2,c_ dots,c_l $ s $ s $ s $ s_i $ s_i $ s_i $ s_i $ s $ s_i $ s_i $ s $ s $ s_i $ g $。 $(k,l)$ - 着色问题一般是NP完整的,已在特殊的图形类别(例如弦图,cographs和line Graphs)中进行了研究。令$ \hatκ(g)=(κ_0(g),κ_1(g),\ dots,κ__{θ(g)-1} -1}(g))$和$ \hatλ(g)=(λ_0(g),λ_1(G),λ_1(g),\ dots,\ dots,\ dots,\ dots,λ___________________$ where(g)$(g)$(G) - $λ_k(g)$)是最低$ k $(分别为$ l $),因此$ g $具有$(k,l)$ - 着色。我们证明,$ \hatκ(g)$和$ \hatλ$是每个图$ g $的一对共轭序列,而当$ g $是cograph时,$ g $中的顶点数量等于$ \hatκ(g)$或$ \hatλ(g)$中的$ \hatκ(g)$中的条目总和。使用Cographs的分解属性,我们表明每个Cograph可以用Ferrers图表示。我们设计了Cographs $ g $计算$ \hatκ(g)$的算法,并在$ g $中找到一个诱导的子图,可用于证明$ g $的非 - $(k,k,l)$ - 可着色性。

For a pair of natural numbers $k, l$, a $(k,l)$-colouring of a graph $G$ is a partition of the vertex set of $G$ into (possibly empty) sets $S_1, S_2, \dots, S_k$, $C_1, C_2, \dots, C_l$ such that each set $S_i$ is an independent set and each set $C_j$ induces a clique in $G$. The $(k,l)$-colouring problem, which is NP-complete in general, has been studied for special graph classes such as chordal graphs, cographs and line graphs. Let $\hatκ(G) = (κ_0(G),κ_1(G),\dots,κ_{θ(G)-1}(G))$ and $\hatλ(G) = (λ_0(G),λ_1(G),\dots,λ_{χ(G)-1}(G))$ where $κ_l(G)$ (respectively, $λ_k(G)$) is the minimum $k$ (respectively, $l$) such that $G$ has a $(k,l)$-colouring. We prove that $\hatκ(G)$ and $\hatλ(G)$ are a pair of conjugate sequences for every graph $G$ and when $G$ is a cograph, the number of vertices in $G$ is equal to the sum of the entries in $\hatκ(G)$ or in $\hatλ(G)$. Using the decomposition property of cographs we show that every cograph can be represented by Ferrers diagram. We devise algorithms which compute $\hatκ(G)$ for cographs $G$ and find an induced subgraph in $G$ that can be used to certify the non-$(k,l)$-colourability of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源