论文标题

使用高斯工艺的完全贝叶斯无梯度的监督尺寸减小方法

A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method using Gaussian Processes

论文作者

Gautier, Raphael, Pandita, Piyush, Ghosh, Sayan, Mavris, Dimitri

论文摘要

现代工程问题的普遍特征是将参数或输入映射到基础物理过程的复杂计算机代码。在其他情况下,实验设置用于对实验室的物理过程进行建模,从而确保高精度,同时在材料和物流方面成本高昂。在这两种情况下,只能通过以有限数量的输入或设计查询昂贵的信息源来生成有限的数据。在存在高维输入空间的情况下,此问题进一步更加复杂。最先进的参数缩小方法(例如Active子空间)旨在确定原始输入空间的子空间,足以解释输出响应。这些方法受到对梯度评估或大量数据的依赖的限制,从而使它们无法充分遇到昂贵的问题,而无需直接访问梯度。所提出的方法是无梯度和完全贝叶斯的,因为它量化了低维子空间和替代模型参数的不确定性。这可以对有限的数据可用性进行认识论不确定性和鲁棒性的全面量化。它在工程和科学的多个数据集上进行了验证,并根据四个方面的其他最先进的方法进行了验证:a)恢复活动子空间,b)确定性预测准确性,c)概率预测准确性,d)训练时间。比较表明,在确定性和概率的意义上,当仅使用训练时间增加的训练时,提出的方法在确定性和概率的意义上都提高了主空间的恢复和预测精度。

Modern day engineering problems are ubiquitously characterized by sophisticated computer codes that map parameters or inputs to an underlying physical process. In other situations, experimental setups are used to model the physical process in a laboratory, ensuring high precision while being costly in materials and logistics. In both scenarios, only limited amount of data can be generated by querying the expensive information source at a finite number of inputs or designs. This problem is compounded further in the presence of a high-dimensional input space. State-of-the-art parameter space dimension reduction methods, such as active subspace, aim to identify a subspace of the original input space that is sufficient to explain the output response. These methods are restricted by their reliance on gradient evaluations or copious data, making them inadequate to expensive problems without direct access to gradients. The proposed methodology is gradient-free and fully Bayesian, as it quantifies uncertainty in both the low-dimensional subspace and the surrogate model parameters. This enables a full quantification of epistemic uncertainty and robustness to limited data availability. It is validated on multiple datasets from engineering and science and compared to two other state-of-the-art methods based on four aspects: a) recovery of the active subspace, b) deterministic prediction accuracy, c) probabilistic prediction accuracy, and d) training time. The comparison shows that the proposed method improves the active subspace recovery and predictive accuracy, in both the deterministic and probabilistic sense, when only few model observations are available for training, at the cost of increased training time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源