论文标题
$ d $ hothothing totrormated todormed kenmotsu歧管中的几何孤子
Geometric solitons in a $D$-homothetically deformed Kenmotsu manifold
论文作者
论文摘要
我们认为在$ d $ hophothet的kenmotsu歧管中,几乎是Riemann和Ricci soliton,它具有潜在的向量场,是梯度矢量场,螺线管矢量场或变形结构的REEB矢量场,并明确地获得了Ricci和Ricci和Scalar曲线。当变形的歧管接收几乎riemann或几乎ricci soliton时,我们还为初始kenmotsu歧管的RICCI曲率提供了下限。
We consider almost Riemann and almost Ricci solitons in a $D$-homothetically deformed Kenmotsu manifold having as potential vector field a gradient vector field, a solenoidal vector field or the Reeb vector field of the deformed structure, and explicitly obtain the Ricci and scalar curvatures for some cases. We also provide a lower bound for the Ricci curvature of the initial Kenmotsu manifold when the deformed manifold admits a gradient almost Riemann or almost Ricci soliton.